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Preface 

In an era where healthcare is evolving at an unprecedented pace, the integration of 

digital technologies for optimized and efficient care delivery is no longer just a 

futuristic vision, but a tangible reality. The realm of Digital Health applications stands 

at the forefront of this transformation, offering innovative solutions to improve 

healthcare delivery. This book delves into the heart of this transformation, exploring 

how healthcare providers, traditionally distant from the intricacies of computer 

programming, are now pivotal in harnessing the power of digital health technologies.  

Healthcare providers, with their in-depth understanding of patient needs and 

healthcare dynamics, are best positioned to identify where Digital Health applications 

can be most effective. However, the development of these applications has historically 

required a skill set in computer programming – a proficiency not typically included in 

professional healthcare training programs. This discrepancy often leaves those with 

the most relevant insights without the tools to implement them. 

Enter KNIME, a game-changer in the field when applied to Digital Health. KNIME 

revolutionizes the creation of data and analysis workflows, in a codeless fashion 

through an intuitive interface. This has now made it possible to train future healthcare 

professionals in developing Digital Health applications without necessitating a 

background in computer programming.  

The success of this approach is nothing short of remarkable: We have witnessed 

healthcare professional students create comprehensive digital health workflows using 

KNIME within a mere five weeks. This book serves as a testament to this success, 

showcasing how the low/no-code KNIME platform has been effectively harnessed by 

professional healthcare degree students to create digital health applications relevant 

to real-world healthcare practice. 

Through a series of compelling case studies and real-life applications, this book 

demonstrates the transformative power of integrating digital technology into 

healthcare. It is a tribute to the innovative use of KNIME in empowering healthcare 

professionals and a guide for future pioneers in the field of Digital Health. 

Welcome to a journey of discovery, innovation, and digital transformation in 

healthcare. 

 

Dayanjan S. Wijesinghe 

Associate Professor 

Virginia Commonwealth University, School of Pharmacy 
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Data Apps for Healthcare Applications 

Digital health(care) is a discipline in which the involved parties have different 

backgrounds and unequal degrees of data and analytics literacy: Solution developers 

and patients are on opposite ends of this spectrum. Typically, clinicians and 

practitioners (like many of the authors of articles in this book) lie in between these two 

extremes with deep domain knowledge, the demand to provide the best care to 

patients, and usually little to no coding experience. 

KNIME Analytics Platform enables practitioners to implement advanced calculations 

and personalized analyses with significant ease. Its no-code/low-code approach to 

visual workflows grants access to a wide variety of features without the necessity to 

code (which often turns out to be a hurdle) but leaves the option open. In addition, 

KNIME Business Hub enables users to deploy visual workflows as data apps with a 

few clicks. This allows for easy accessibility and execution from any browser, making 

insights available to anyone, even patients.  

Since workflows can easily be shared through the KNIME Community Hub, anyone can 

use available workflows as blueprints for new projects. The workflows associated with 

articles in this chapter (and the rest of the book) are collected in a live repository on 

KNIME Community Hub and can be downloaded and customized. They share the 

common focus of encapsulating advanced calculations in simple workflows that can 

easily be used by practitioners. 

This chapter includes the articles: 

• How a Data App improves Vancomycin Dosing in Obesity, p. 3 

– Dayanjan Wijesinghe, Virginia Commonwealth University &  

– Danielle Holdren, Virginia Commonwealth University 

• Automating Total Parenteral Nutrition Calculation in KNIME for Quality Care, 

p. 11 

– Dayanjan Wijesinghe, Virginia Commonwealth University & 

Courtney Ciarrocca, Virginia Commonwealth University 

• Monitor Kidney Health in KNIME, p. 15 

– Mallik Graves, Virginia Commonwealth University & 

– Dayanjan Wijesinghe, Virginia Commonwealth University 
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• Automating Pharmacokinetics Calculation in KNIME, p. 21 

– Danielle Holdren, Virginia Commonwealth University & 

– Dayanjan Wijesinghe, Virginia Commonwealth University 

• Heparin Therapeutic Monitoring and Calculation with KNIME, p. 27 

– Amir Behdani, Virginia Commonwealth University 

– Micah Buller, Virginia Commonwealth University  

– Gina Chong, Virginia Commonwealth University  

– Maria DePonte, Virginia Commonwealth University  

– ReHanshae Harvey, Virginia Commonwealth University  

– Sebastian Jaques, Virginia Commonwealth University  

– Dori Leka, Virginia Commonwealth University &  

– Dayanjan Wijesinghe, Virginia Commonwealth University 

• Track Disease with KNIME on COVID-19 Dashboard, p. 32 

– Ali Asghar Marvi, KNIME
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How a Data App improves Vancomycin Dosing in 

Obesity 

 

Authors: Dayanjan Wijesinghe, Virginia Commonwealth University & Danielle Holdren, Virginia 

Commonwealth University 

Workflow on KNIME Community Hub: Vancomycin Input Calculator 

Timely Vancomycin Area-Under-the-Curve-based Dosing for 

Informed Decision-making 

Vancomycin is an antibiotic used to treat serious bacterial infections. It’s most 

commonly administered intravenously, typically for infections such as bacteremia, 

endocarditis, osteomyelitis, etc. Despite its wide-spread use and success in treating 

these serious infections, clinicians have a challenging job to provide the correct 

dosage to their patients. This is because the manner in which Vancomycin distributes 

through the body is complex, with factors such as body weight, muscle mass, and fat 

distribution all playing a role. Vancomycin also has a narrow therapeutic index. This 

means that small differences in dose or blood concentration can lead to therapeutic 

failures or adverse drug reactions and an increased risk of overdosing or underdosing.  

Vancomycin dosing guidelines therefore recommend close adjustments based on 

total-body-weight. However recent research shows that this is not ideal for obese 

patients. While the volume of distribution of vancomycin increases with body weight, 

it does not increase proportionally. The results of incorrect dosing of Vancomycin are 

serious. Overdosing can lead to liver toxicity, hearing loss, and blood clots, for example, 

and underdosing to prolonged hospitalization, even treatment failure.  

A new approach to dosing Vancomycin for obese patient populations using so-called 

AUC-guided monitoring method produces more accurate dosing. However, these 

calculations are often time consuming and can be a major hindrance in scenarios 

where time to antibiotic administration is critical. Due to the recent nature of this newly 

recommended dosing approach, there is a lack of automated tools available for use in 

clinical practice at this time.  

In this article we look at how we were able to overcome the challenges of calculating 

Vancomycin dosing for patients with obesity and build an automated Vancomycin 

dosage calculator. The calculator incorporates the customized AUC-guided 

requirements, gives clinicians access to precise dosage recommendations, and the 

ability to respond quickly to insight from Therapeutic Drug Monitoring (TDM).  

https://www.linkedin.com/in/dayanjanwijesinghe/
https://www.linkedin.com/in/danielle-holdren-pharmd-00b9ba168/
https://hub.knime.com/knime/spaces/Digital%20Healthcare/Vancomycin%20Input%20Calculator~cOL52ol64oWNIeLm/current-state
https://en.wikipedia.org/wiki/Vancomycin
https://en.wikipedia.org/wiki/Therapeutic_drug_monitoring
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The Importance of Therapeutic Drug Monitoring with 

Vancomycin 

Vancomycin’s narrow therapeutic index requires that Vancomycin dosing is monitored 

according to Therapeutic Drug Monitoring (TDM) and dosings adjusted quickly and 

accurately. 

TDM allows clinicians to measure and track drug levels in the patient’s body 

throughout the course of treatment. By tracking these levels, clinicians are better able 

to dose Vancomycin within its therapeutic index, and reduce the risks of over- or 

underdosing. 

This monitoring of drug levels involves the collection of blood samples at specified 

times during treatment, followed by laboratory testing, and the use of pharmacokinetic-

pharmacodynamic (PKPD) calculations to determine the true Vancomycin 

concentration in the blood – what the drug is currently “doing” to the body. 

Area-Under-the-Curve (AUC) Monitoring 

The most common PKPD parameters used to predict the concentration of Vancomycin 

in the blood include the Minimum Inhibitory Concentration (MIC), peak and trough 

levels, and the area-under-the-curve (AUC) (see figure below1). 

 

1 Adult Vancomycin AUC-Guided Dosing Playbook. HCA Healthcare. Created March 1, 2022. Accessed July 

13, 2022. 

Area under the curve illustration1. 

https://en.wikipedia.org/wiki/Minimum_inhibitory_concentration
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The MIC is the lowest concentration of antibiotic which prevents visible growth of 

bacteria. This concentration is dependent on the patient, the antibiotic, and the 

offending bacterial pathogen, which may vary across different clinical scenarios. The 

MIC for vancomycin is assumed to be 1 mg/L in most clinical scenarios. 

The peak level is the highest concentration of antibiotic reached after administration, 

whereas the trough level is the lowest concentration of antibiotic reached. 

The AUC refers to the total exposure of antibiotic over a specified period of time, also 

known as the dosing interval. Certain antibiotics, such as vancomycin, are considered 

to be time dependent, and demonstrate the best bacterial inhibition when the total 

antibiotic exposure remains above the target MIC. 

Therefore, the best predictor of Vancomycin activity in the body is an AUC/MIC ratio 

and can be used to guide dosing decisions. 

Challenges in Calculating Vancomycin  

Previous vancomycin guidelines recommended using trough-guided monitoring of 

vancomycin, in which trough levels were used as a surrogate measure of the patient’s 

AUC2. This method suggested that a trough level of >10 mg/L would be sufficient to 

sustain an AUC goal of >400 mg*h/L, which is the specific AUC at which vancomycin 

is determined to be effective. 

However, further research has determined that trough levels have poor correlation with 

the AUC, often resulting in underestimation and increased antibiotic exposure. 

Recent updates to the vancomycin guidelines place a strong emphasis on the use of 

AUC-guided monitoring in patients with severe MRSA infections, who will be receiving 

>5 days of therapy, and may be at increased risk of liver toxicity3. This monitoring 

method involves the collection of peak and trough levels, followed by laboratory 

testing, and PKPD calculations of the patient’s true AUC. For these patients, an AUC of 

400-600 mg*h/L should be targeted. 

 
2 Rybak MJ et al. Vancomycin Therapeutic Guidelines: A Summary of Consensus Recommendations from 

the Infectious Diseases Society of America, the American Society of Health-System Pharmacists, and the 

Society of Infectious Diseases Pharmacists. Clinical Infectious Diseases. 2009; 49(3): 325–327. 

https://doi.org/10.1086/600877. 

3 Rybak MJ et al. Therapeutic Monitoring of Vancomycin for Serious Methicillin-resistant Staphylococcus 

aureus Infections: A Revised Consensus Guideline and Review by the American Society of Health-system 

Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and 

the Society of Infectious Diseases Pharmacists. Clinical Infectious Diseases. 2020; 71(6): 1361–1364. 

https://doi.org/10.1093/cid/ciaa303. 

https://doi.org/10.1086/600877
https://doi.org/10.1093/cid/ciaa303
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New Approach to Vancomycin Calculation Helps Obese Patient 

Populations 

Recent research from Masich et. al.4, further expands upon this recommendation as it 

relates to the patient population with obesity, where certain PKPD parameters may be 

altered from the standard patient population. Studies indicate that while the volume of 

distribution of vancomycin does increase with body weight, it does not increase 

proportionally. 

In patients with obesity, the distribution of vancomycin in the body may increase or 

decrease depending on patient specific factors, such as body fat content, muscle 

mass, and kidney function. In her research, Masich develops a novel approach to 

dosing vancomycin in this patient population using the newly emphasized AUC-guided 

monitoring method. 

However, these calculations can often be time consuming in the clinical setting and 

can be a hindrance in scenarios where time to antibiotic administration is critical. The 

transition to AUC-guided monitoring adds steps and calculations that may not have 

been previously relied upon. Additionally, due to the recent nature of this 

recommendation, there is a lack of automated tools available for use in clinical 

practice at this time. Standard IT approaches to automating this type of calculation are 

simply not suited to the individualized nature of Vancomycin dosing for patients with 

obesity. 

The use of an automated tool for vancomycin calculations would overcome several 

barriers in clinical practice: time constraints, dosing inaccuracies, and special 

population considerations. 

How a Customized, Automated Tool Enables Precise Treatment 

The complex nature of vancomycin dosing often requires a reliance upon healthcare 

professionals with an in-depth knowledge of PKPD parameters. A code free data 

analytics platform, such as KNIME Analytics Platform5, can be used to build a workflow 

that makes the calculations with the necessary customization. Advanced data science 

tools provide the flexibility to build such a customized and complex application. 

KNIME’s visual programming environment bridges the coding skills gap. Healthcare 

 
4 Masich AM et al. Vancomycin Pharmacokinetics in Obese Patients with Sepsis or Septic Shock. 

Pharmacotherapy. 2020; 40(3): 211-220. doi:10.1002/phar.2367. 

5 Berthold, M. R. et al. KNIME: The Konstanz Information Miner. Data Analysis, Machine Learning and 

Applications: Proceedings of the 31st Annual Conference of the gesellschaft für Klassifikation E.V., Albert-

Ludwigs-Universität Freiburg. 2007; 319–326. https://doi.org/10.1007/978-3-540-78246-9_38. 

https://doi.org/10.1007/978-3-540-78246-9_38
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professionals can build analytics applications without needing to know how to code 

and are able to fold their valuable expertise into the process. 

The Vancomycin Calculator in KNIME 

Over the span of a five-week advanced pharmacy practice experience (APPE) in digital 

health, a PharmD candidate with no prior knowledge of data analytics or coding, has 

successfully created an interactive vancomycin AUC-based dosing calculator for use 

in patients with obesity. 

The underlying workflow comprises a series of components, which encapsulate the 

different calculation routes necessary for the patient’s final AUC estimation.  

Moving through the workflow, you’ll see a component that collects a patient’s baseline 

inputs and calculates an initial maintenance dose (MD) of vancomycin (Patient 

Baseline Inputs and Initial MD). This component also allows for the calculation of other 

individualized data, such as body mass index (BMI) and creatinine clearance (CrCl). 

The Widget nodes and Tile View node included here begin to build the interactive 

dashboard (see figure below).  

 

Start of calculator workflow leading to PKPD calculations. 

Workflow of the component used to calculate the patient's initial MD of vancomycin. 
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The next component of the workflow handles the first order PKPD calculations (AUC 

Estimation). This component encapsulates many different equations essential for 

estimating the biggest output of interest, which is the patient’s AUC concentration. In 

a similar fashion, the Widget nodes and Tile View nodes add functionality to the 

interactive dashboard (see figure below). 

Each of the two components, Patient Baseline Inputs and Initial MD and AUC 

Estimation, serve as the building blocks for the interactive calculator dashboard, which 

provides the functionality to individualize dosing for each patient (see figure below). 

Workflow of the component used to perform first order PKPD calculations for the patient’s AUC 

estimation. 
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Interactive calculator dashboard which can be shared as a browser-based data app. 
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AUC-based Dosing Calculation Reduced to Seconds 

The developed KNIME workflow captures each PKPD calculation step used in the 

estimation of a patient’s AUC, and appropriately outputs values which can be used to 

guide clinical decision making. These calculations, which are usually time consuming, 

are condensed to seconds. This allows clinicians to visualize different data inputs in a 

more efficient and agile manner, simplifying the vancomycin dosing process in clinical 

practice. 

Agile Vancomycin Dosing for Better Patient Outcomes 

By optimizing dosing based on the calculator, we are going to be able to prevent 

toxicities but also prevent the overtreatment that can happen if we don't reach the 

therapeutic levels. Ultimately this will result in improved patient outcomes, decreased 

hospitalization length, and increased time to recovery. 

 

Watch the presentation on YouTube: “Danielle Holdren - Vancomycin Area Under the Curve-

Based Dosing in Obesity: Calculation Dashboard”. 

 

Special thanks to Alexander Smart PharmD, BCIDP and Anne Masich PharmD, BCPS for their 

support and feedback throughout. 

https://youtu.be/3p3-5iTkkdc?si=_syFxfIc-nRF487q
https://youtu.be/3p3-5iTkkdc?si=_syFxfIc-nRF487q
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Automating Total Parenteral Nutrition Calculation in 

KNIME for Quality Care 

 

Authors: Dayanjan Wijesinghe, Virginia Commonwealth University & Courtney Ciarrocca, Virginia 

Commonwealth University 

Workflow on KNIME Community Hub: TPN Calculator 

 

Imagine that you are the clinical pharmacist in the internal medicine team at your 

hospital. During morning rounds, you see a new patient who was admitted that 

morning for an 8-day history of nausea, vomiting, abdominal pain and fever. The 

physician taking care of the new patient tells you they have tried to place a feeding 

tube in his nose, but he keeps pulling it out. Until they find a diagnosis for his N/V the 

team wants to start a TPN and asks for your help. 

Patients hospitalized for serious illnesses or injury are often unable to obtain their daily 

nutrition needs orally. Lengthy treatments can mean that patients with gastrointestinal 

absorption issues, obstructions, or persistent hemorrhages, for example, are not 

allowed anything by mouth for several days, and more. 

Total Parenteral Nutrition, also known as a TPN, provides patients with their daily 

nutritional needs via their bloodstream. TPNs are vital in healthcare because they 

provide life-saving nutrition for people with intestinal failure. These patients would 

otherwise be classified “unfeedable” as they would have no means to obtain the 

nutrients their body needs. 

The body undergoes immense stress during critical illness which can lead to multiple 

organ dysfunction, longer hospital stays, and a disproportionate death rate. Coupled 

with the increased caloric deficit that arises when no nutrition is available, trials have 

shown that these complications are significantly worsened for patients who do not 

receive nutritional support. They bring metabolic balance back to the patient as each 

component is personalized for the individual. Maintaining this proper nutrition in 

critically ill patients reduces the body’s response to stress, prevents cellular injury, and 

helps balance the immune response, all of which leads to better health outcomes. 

However, the calculation of TPNs is complicated. TPNs comprise not only the variety 

of proteins, carbohydrates, lipids, and electrolytes the body needs to function properly. 

They can also be further personalized by adding multivitamins, trace elements, and 

medications, such as insulin and those needed to prevent stress ulcers. 

https://www.linkedin.com/in/dayanjanwijesinghe/
https://www.linkedin.com/in/courtney-ciarrocca/
https://hub.knime.com/knime/spaces/Digital%20Healthcare/TPN%20Calculator~Z2283tM70vJ8B0vG/current-state


Data Apps for Healthcare Applications 

Automating Total Parenteral Nutrition Calculation in KNIME for Quality Care 

12 

The “Moving Parts” of TPN Calculation 

But it’s the many moving parts in the equation that make parenteral nutrition 

calculation even more complicated. 

Multiple patient factors influence the final mix of ingredients that go into the “TPN 

order”: The form the healthcare professional fills out to specify what the patient needs 

based on their status. 

Any Change Has Multiple Downstream Effects 

Any small change in the patient’s status will alter the final make-up of their TPN order. 

Any small change in the products used for TPNs can mean a change in ratio of the 

required nutrients. This impacts the required quantity needed and subsequently the 

downstream calculations. 

For example, electrolyte balances need to be checked to ensure that the proper acid-

base balance is achieved. Osmolarity also needs to be checked to determine which IV 

route can be safely used for administration. It is also important to not overfeed the 

patient. Many of the patients who receive TPNs are malnourished, and overfeeding can 

increase stress on vital organs and cause serious health problems. 

TPN calculations are a balancing act between getting the patient what they need and 

not overloading them. Precise monitoring is required to make daily changes to the TPN, 

adjusting to the changing lab values. 

How KNIME Simplifies TPN Calculations 

With so many variables affecting TPN calculation, there is considerable potential for 

error. Automating TPN calculations increases efficiency and minimizes error. 

However, due to the changing nature of a patient's dietary requirements, available 

products etc., automating these calculations using standard IT-driven approaches is 

challenging. Conventional tools might not be flexible enough for such a customized 

solution. In addition, the important concepts of TPN calculation have to be explained 

to the IT team – to non-healthcare specialists – in order for them to be able to provide 

an automated solution. 

This process can be made more efficient when the healthcare specialists are able to 

build their own automated solution. 
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5 Weeks from Project Start to Finish: TPN Calculator in KNIME 

During the final part of my Advanced Pharmacy Practice Elective (APPE) rotation, we 

used KNIME to build an automated solution. As a no-code/low-code data science tool, 

it gave me – as a healthcare specialist with no coding background – ease of learning 

and access to advanced analytics. 

The final product of this rotation uses KNIME Analytics Platform for each aspect of the 

calculation and creates an interactive dashboard – all without a single line of code. In 

combination with the KNIME Business Hub, this dashboard can be shared or made 

centrally available as a browser-based data app. 

Have a look at the result. 

Doing the calculations by hand can be quite complicated in order to ensure everything 

is balanced. By using the TPN calculator workflow, the patient and product data can 

be entered and the final TPN order calculated in just a few seconds. 

The interactivity of the calculator also allows users to quickly see how changing a part 

of the order will affect the final product. It also alerts the pharmacist to when ratios go 

The TPN calculator dashboard. 

The workflow that creates the TPN calculator dashboard. 

https://www.knime.com/blog/deliver-data-apps-with-knime
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over or below thresholds. This solution could be advanced further in KNIME by 

automating patient data loading for a central hospital database. 

“At the School of Pharmacy at VCU, we see the project as a proof of concept that 

demonstrates how someone who is educated in a healthcare field and understands TPNs 

but knows very little about coding, can really quickly implement a workflow of relevance to 

healthcare practice.” 

Within the span of a five-week Advanced Pharmacy Practice Elective (APPE) rotation, 

someone with no knowledge of KNIME or coding has successfully managed to create 

a tool to simplify TPN calculations. 

 

Watch the presentation on YouTube: “Courtney Ciarrocca - Digital Health APPE Rotation - 

Total Parenteral Nutrition Calculation Dashboard”. 

 

https://youtu.be/g2oVngi6bjg?si=XjfrXWrEy-lFluxb
https://youtu.be/g2oVngi6bjg?si=XjfrXWrEy-lFluxb
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Monitor Kidney Health in KNIME 

 

Authors: Dayanjan Wijesinghe, Virginia Commonwealth University & Malik Graves, Virginia Commonwealth 

University 

Workflow on KNIME Community Hub: Creatinine Clearance, Glomerular Filtration Rate, Drug Dosage 

Calculation Dashboard 

 

Kidney health is key to our overall wellbeing. Healthcare professionals use a 

measurement known as the Glomerular Filtration Rate (GFR) to monitor how well our 

kidneys are working to clean our blood. 

Glomeruli are tiny filters in our kidneys that help remove toxins from our blood. The 

GFR measures how much blood these filters can clean every minute. Monitoring our 

GFR helps doctors keep an eye out for the onset of kidney disease – the major disease 

of concern being Chronic Kidney Disease (CDK) – and provide the right degree of 

individualized treatment, ranging from advice on simple lifestyle changes through to 

kidney transplant or dialysis. 

However, it can’t be measured directly. The calculation is complex, based on multiple 

factors like age, body size, sex, race/ethnicity, as well as the level of creatinine – a 

waste product – in the blood. 

Pharmacists strive to avoid the risks associated with the progression of kidney 

disease, of overdosing or underdosing – indeed any factors that potentially hinder 

optimal delivery of treatments and the patient’s recovery. Accurate calculation of GFR 

and Creatinine Clearance (CrCl) are therefore vital to minimizing risks to patients. 

The Challenges of Measuring CrCl and GFR 

The GFR reveals the rate at which fluid is filtered by the kidneys, while CrCl, measure 

how much creatinine is in your blood. Healthy kidneys filter it out, but if you have kidney 

disease, creatinine stays in the blood and gradually builds up. 

Creatinine levels and GFR are both measured by using creatinine samples from serum 

or urine. Creatinine collected from one source can be compared with creatinine from 

the other source. For comparison purposes, serum collection has to be within 24 hours 

of urine collection and vice versa. Serum creatinine samples are typically collected 

more than urine samples. 

Healthcare professionals need the CrCl calculations in order to provide the estimated 

GFR – as GFR is not measured directly in practice. But despite the fact that CrCl 

https://www.linkedin.com/in/dayanjanwijesinghe/
https://www.linkedin.com/in/malikrashaadagraves/
https://hub.knime.com/knime/spaces/Digital%20Healthcare/latest/Creatinine%20Clearance,%20Glomerular%20Filtration%20Rate,%20Drug%20Dosage%20Calculation%20Dashboard~4O5UBupfn1STsYeh
https://hub.knime.com/knime/spaces/Digital%20Healthcare/latest/Creatinine%20Clearance,%20Glomerular%20Filtration%20Rate,%20Drug%20Dosage%20Calculation%20Dashboard~4O5UBupfn1STsYeh


Data Apps for Healthcare Applications 

Monitor Kidney Health in KNIME 

16 

calculations are performed commonly, GFR calculation is not error free. CrCl 

overestimates GFR by 10-20%. This is due to creatinine being freely filtered by the 

glomerulus while also being secreted by the capillaries. 

Further challenges to measuring creatinine clearance involve improper urine 

collection. This leads to an underestimation of creatinine excretion. Age-related 

increases in tubular secretion result in overestimation of GFR. 

Other challenges include sex and race, with specific factors affecting creatinine 

production and clearance. 

The Challenges of Calculating Drug Dosages 

The difficulty here is that healthcare professionals need to complete a thorough 

examination of the patient’s history. Knowing and understanding the patient’s chief 

complaint, the history of the current illness, their prior medical history, social history, 

family history, medication, and prior treatments is all crucial to deciding which types 

of medication can be prescribed and at what dose. 

To sum it up, every patient is different. There is no “one size fits all” treatment option. 

Fortunately, there are practice guidelines that can be referenced, but these still have to 

be tailored to best suit the patient. Many factors play a part. One important factor, for 

example, outside of guideline recommendations and best practices, is patient 

preference. Healthcare professionals need to be aware that just because a reliable 

source suggests a particular method this does not mean it will always be successful. 

What Do the Numbers Mean? 

High serum creatinine levels and low creatinine clearance indicate abnormal renal 

(kidney) function. 

A normal creatinine clearance level for healthy women is 100-130mL/min or 110-150 

mL/min for men. People whose kidneys are functioning normally will have a serum 

creatinine level 0.5 and 1.1mg/dl for women or 0.6 to 1.2 mg/dl for men. 

How are the Numbers Calculated? 

As we already mentioned, CrCl is measured by monitoring creatinine levels. We use 

the Cockcroft-Gault formula6, which includes a patient’s weight (kg), age and gender, 

to estimate CrCl in mg/dL. 

 
6 https://www.kidney.org/professionals/kdoqi/gfr_calculatorcoc 

https://www.kidney.org/professionals/kdoqi/gfr_calculatorcoc
https://www.kidney.org/professionals/kdoqi/gfr_calculatorcoc
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For GFR, there are several formulas you can use: 

• Modification of Diet in Renal Disease Study Group (MDRD) – includes serum 

creatinine, age, ethnicity, and albumin levels. Recommended for detecting a GFR 

lower than 60 mL per minute or lower than 90 mL in older patients. 

• Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) – based on 

gender and whether a patient is black or non-black. Practice guidelines 

recommend this formula for the estimation of GFR. 

• Mayo Quadratic formula – used to better estimate GFR in patients that have 

preserved renal function 

• Schwartz formula – estimation of GFR in children 

Free Up Valuable Time with Automated, On-the-Fly Calculations 

Easily accessible automation is one of the main reasons why we think KNIME is a good 

platform for Creatinine Clearance, Glomerular Filtration Rate and Drug Dosage 

Calculations. 

I have used KNIME to build calculators that can be used in a clinical setting. They have 

the potential to free up a healthcare professional’s time – bypassing the need to look 

up appropriate calculation formulas, nephrotoxic medications, and dosing guidelines. 

With my interactive calculator everything the healthcare professional needs is 

available in one place. It provides the means to calculate the gold standard calculation 

of creatinine clearance, gives you the normal ranges for men and women. enabling you 

to refer and check your calculations. 

The calculator also adds in the ability to make your calculations more precise with two 

further methods of CrCl calculation depending on whether the patient is at home or 

hospitalized. 

 

 

“Take it from me, a fourth-year pharmacy student with minimal programming knowledge is 

now a third level certified KNIME user - It took 1-2 weeks to gain my certification in using 

KNIME; within 3 weeks I was comfortable with application practices. I have learned KNIME 

concepts and utilization for my five-week advanced pharmacy practice experience (APPE) 

digital health rotation. KNIME provides its users with many tools, and even has the capability 

to incorporate outside functionality when the integrated tools are not enough. The 

community too is steadily growing, broadening the possibilities of what KNIME can do, 

across various practice settings.” – Malik Graves 
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The Magic Under the Calculator’s Hood: The KNIME Workflow 

My workflow consists of four main components to calculate Estimated CrCl, Modified 

CrCl, Direct CrCl, GFR & Drug Dosage. Each component is then made up of many 

different nodes and widgets that coexist to create the completed interactive 

calculators, accessible via the KNIME Business Hub.  

Below you will find an example of what the inside of each component looks like, give 

or take. 

Widget nodes (blue) create how the interactive part of the calculator will look, Math 

Formula nodes carry out the calculations and numbering aspects (yellow), and Flow 

Variable nodes mark what data is to be used (brown). 

Workflow broken down into four main components. 
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Interactive Data App for Estimated CrCl Calculation 

When everything is placed together as desired, complete with instructions, you have 

an interactive tool to utilize at your command. 

The inside one the Estimated CrCl workflow components. The Math formula nodes carry out the 

calculations. 

Interactive CrCl Calculator. Input patient values to calculate. 
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5 Weeks from Project Start to Project Finish 

My short-term goal was, as the first digital health student to have L3 certification, to 

have my completed interactive calculator available in the digital healthcare repository 

on the KNIME Business Hub for others to use. Check! 

Next Steps: Connect Data App to Lexicomp Drug Database 

My next steps now are to make updated versions of the calculator, adding more input 

options, to work towards achieving my overall desire to connect the calculator to 

Lexicomp’s drug database. This achievement would allow vast selection and 

appropriate dosing of many medications, far more than what is available now. 

 

Interactive Drug Dosage Calculator. Input patient values to calculate. 
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Automating Pharmacokinetics Calculation in KNIME 

 

Authors: Dayanjan Wijesinghe, Virginia Commonwealth University & Danielle Holdren, Virginia 

Commonwealth University 

Workflow on KNIME Community Hub: PK Calculator 

Using an Automated Tool in Clinical Practice for Efficient PK 

Calculations 

Pharmacokinetics is a branch of pharmacology that provides insight on how the body 

responds to a drug. It encompasses processes such as Absorption, Distribution, 

Metabolism, and Excretion (ADME), which can be used to determine how efficient and 

how safe a drug is. Clinicians use pharmacokinetic parameters and calculations to 

visualize and interpret each of the phases of ADME as they monitor a drug’s action in 

vivo. 

Each phase of ADME is associated with specific pharmacokinetic parameters. For 

example, the absorption and distribution phases of ADME can be extrapolated from 

drug concentrations and volumes, while the metabolism and excretion phases may be 

illustrated by parameters such as the elimination rate constant and clearance. Other 

considerations include the route and method of drug administration, which also plays 

a role in the body’s response to a drug. In practice, each of these pharmacokinetic 

parameters can be calculated, and a treatment approach can be individualized for 

patients. 

However, one of the challenges in pharmacokinetics (PK) is the time and 

computational power these calculations require. 

Using an automated tool in clinical practice can provide a more efficient process of 

drug monitoring via pharmacokinetic parameters. I used the code free data analytics 

platform, KNIME, to create a customized workflow capable of performing these 

pharmacokinetic calculations. KNIME is a platform which provides users, who may 

have minimum knowledge of coding and analytics, with the necessary tools to build 

such a calculator. 

https://www.linkedin.com/in/dayanjanwijesinghe/
https://www.linkedin.com/in/danielle-holdren-pharmd-00b9ba168/
https://hub.knime.com/knime/spaces/Digital%20Healthcare/PK%20Calculator~-5Qf0YHhsNNZCMJw/current-state
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A KNIME Workflow for Pharmacokinetic Calculation 

Pharmacokinetic calculation differs depending on how the drug is 

administered. My pharmacokinetic workflow consists of a single 

component, which contains different calculations routes of 

calculations, necessary for estimating different pharmacokinetic 

parameters. 

The workflow is split into three main routes. In the figure below, you 

can see the pharmacokinetic calculations necessary for drugs 

administered intravenously (IV). 

Start of calculator 

workflow leading to 

pharmacokinetic 

calculations. 

Workflow snippet of pharmacokinetic calculations for IV administered drugs. 
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Here you can see how this part of the workflow looks when viewed via the interactive 

dashboard.  

 

The figure below shows the calculations necessary for drugs administered orally (PO). 

 

 

 

 

 

 

 

 

 

Entering the information required for pharmacokinetic calculations based on IV administered drugs. 
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This workflow snippet below underlies the part of the dashboard for entering and 

making the calculations based on orally administered drugs. 

  

Pharmacokinetic calculations based on orally administered drugs. 

Workflow snippet of pharmacokinetic calculations for PO administered drugs. 
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The calculation route, shown below, takes care of a series of baseline calculations 

useful for dosing purposes. 

The blue Widget nodes and Table View nodes included in this workflow are the 

foundation of the interactive dashboard, allowing for patient baseline inputs and 

visualization of calculated data. The yellow Math Formula (Variable) nodes allow for 

the embedding of necessary formulas for the pharmacokinetic calculations. 

Below you can see how this part of the workflow looks when viewed via the interactive 

data app. 

Workflow snippet of patient baseline calculations 

Entering patient data to begin making the pharmacokinetic calculations. 
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Digital Health Application Development 

This project was part of an Advanced Pharmacy Practice Elective (APPE) rotation on 

Digital Health Application Development at Virginia Commonwealth University, School 

of Pharmacy.We used KNIME to build an automated solution. As a no-code/low-code 

data science tool, it gave us – as a healthcare specialist with no coding background – 

ease of learning and access to advanced analytics. 

 

Watch the presentation on YouTube: “Danielle Holdren - Digital Health APPE Rotation - 

Pharmacokinetic Calculation Dashboard”. 

 

https://youtu.be/YeljCT_evhA?si=vuhw2-vWDHljDtnZ
https://youtu.be/YeljCT_evhA?si=vuhw2-vWDHljDtnZ
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Heparin Therapeutic Monitoring and Calculation with 

KNIME 

 

Authors: Dayanjan Wijesinghe,  Amir Behdani, Micah Buller, Gina Chong, Maria DePonte, ReHanshae 

Harvey, Sebastian Jaques, & Dori Leka - Virginia Commonwealth University 

Workflows on KNIME Community Hub: Heparin Calculator for Adult General Cardiovascular and Adult and 

Children’s Deep Vein Thrombosis and Peripheral Edema 

 

Heparin is an anticoagulant agent widely used in inpatient settings to prevent the 

formation of blood clots which can develop into deep vein thrombosis (DVT) and 

pulmonary embolism (PE). The risk for development of DVT and PE is highest in the 

hospital due to long-term bed rest. Signs and symptoms of DVT include unilateral leg 

swelling, pain, warmth, redness, palpable cord, and Homan’s sign; whereas, signs and 

symptoms of PE include cough, chest pain/tightness, shortness of breath, palpitations, 

hemoptysis, tachypnea, tachycardia, diaphoresis, and extension of neck pain. Heparin 

dosing is very complicated. The provider has to calculate the initial bolus dose and 

infusion dose based on the patient’s weight until the maximum dose is reached. From 

there a patient needs to be monitored closely using the Activated Partial 

Thromboplastin Time (aPTT) tool to see if a heparin dose adjustment is needed to 

prevent an adverse event from occurring. For instance, if a supra-therapeutic dose of 

heparin and sub-therapeutic dose of heparin is given it can cause bleeding and induce 

clots forming, respectively.  

The Importance of Heparin Therapeutic Monitoring 

All hospitals have a standardized heparin nomogram that utilizes the Activated Partial 

Thromboplastin Time (aPTT) to guide heparin dosing to reduce delays in therapy and 

adverse events. The aPTT is a measure of how long it takes for an individual to form a 

blood clot. With that being said, there are different heparin nomograms created for 

specific patient indications. For the sake of simplicity, we focused on creating a clinical 

calculator based on VCU’s heparin dosing protocol for the adult general cardiovascular 

(CV), adult DVT/PE, and pediatric DVT/PE. 

Therefore, a patient on heparin needs to be monitored closely using the Activated 

Partial Thromboplastin Time (aPPT). 

https://www.linkedin.com/in/dayanjanwijesinghe/
https://www.linkedin.com/in/amirmbehdani/
https://www.linkedin.com/in/micah-buller-77aaa812b/
https://www.linkedin.com/in/gina-chong-4a3979276/
https://www.linkedin.com/in/mariadeponte/
https://www.linkedin.com/in/rehanshaeharvey7973a65a/
https://www.linkedin.com/in/rehanshaeharvey7973a65a/
https://www.linkedin.com/in/sebastian-jaques/
https://hub.knime.com/knime/spaces/Digital%20Healthcare/latest/Heparin%20Calculator%20for%20Adult%20General%20Cardiovascular%20and%20Adult%20and%20Children%E2%80%99s%20Deep%20Vein%20Thrombosis%20and%20Peripheral%20Edema/Heparin%20Calculator%20for%20Adult%20General%20Cardiovascular%20and%20Adult%20and%20Children%E2%80%99s%20Deep%20Vein%20Thrombosis%20and%20Peripheral%20Edema~BjzhSHWsvmC9gzVy
https://hub.knime.com/knime/spaces/Digital%20Healthcare/latest/Heparin%20Calculator%20for%20Adult%20General%20Cardiovascular%20and%20Adult%20and%20Children%E2%80%99s%20Deep%20Vein%20Thrombosis%20and%20Peripheral%20Edema/Heparin%20Calculator%20for%20Adult%20General%20Cardiovascular%20and%20Adult%20and%20Children%E2%80%99s%20Deep%20Vein%20Thrombosis%20and%20Peripheral%20Edema~BjzhSHWsvmC9gzVy
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Use of KNIME in Heparin Calculations 

We utilized a free data analytics software called KNIME to create our simple input-

output heparin dosing calculator. Our clinical calculator provides the initial bolus dose, 

initial infusion rate, infusion rate/bolus dose adjustment and time to repeat aPTT 

measurement for adult general CV, adult DVT/PE and pediatric DVT/PE cases. The 

goal of developing a heparin dosing calculator is to help ease the burden and stress 

for the healthcare provider, to reduce dosing errors, and to retrieve a dosing regimen 

rapidly. 

Advantages of our KNIME Workflow in Comparison to our 

Competitors 

There are other clinical calculators available for heparin dosing available online, such 

as GlobalRPh, Dr. Zad, and Heart Recovery. Unlike our competitors, our calculator is 

not product specific, available for different patient populations, and offers multiple 

heparin dosing protocols. We also use an open source free platform, KNIME, which is 

available for anyone to use. Our competitors’ clinical calculators are most likely written 

in code, which cannot be easily followed or understood by an ordinary person. This 

poses another advantage of our calculator since we utilize an abstract version of code 

called nodes. Lastly, our internal workflow is easily accessible to anyone who is 

interested in learning how we were able to create our calculator, and in return, can be 

effortlessly modified and applied as a starting point for others to use for their own 

projects. 

KNIME Workflow 

Our workflow consists of three main sections, adult general CV, adult DVT/PE, and 

pediatric DVT/PE heparin dosing. Each section is broken into two separate 

components, one for initial bolus and initial infusion rate and the other for adjusted 

heparin dosing based on the patient’s aPTT. 

This figure depicts the three main sections of our KNIME workflow. 

https://www.knime.com/knime-analytics-platform?utm_source=medium&utm_medium=organic&utm_term=&utm_content=&utm_campaign=com_journal
https://www.knime.com/knime-analytics-platform?utm_source=medium&utm_medium=organic&utm_term=&utm_content=&utm_campaign=com_journal
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1. Adult general CV and DVT/PE 

We will use the adult general CV calculator as an example. The first component in the 

workflow (figure below) is the interactive board that utilizes the String Input node and 

two Single Selection Widget nodes. These nodes allow the user to input patient 

specific information such as weight and the heparin concentration. Whether the weight 

is entered in pounds or kilograms, our workflow can convert the value into kilograms 

to use in the calculation of the initial doses through the Rule Engine Variable node and 

the Unit conversion component. The final portion handles heparin calculations to 

determine the initial bolus dose and initial infusion rate by using the Math Formula, 

Rule Engine, Round Double, and Column Filter nodes. 

The next component of the workflow, as shown in figure below, calculates the post-

aPTT dose adjustments. It also allows the user to input the time, current aPTT, 

concentration of the heparin product used, and current infusion rate which are all 

merged and sorted based on aPTT. There are 8 different pathways the calculator will 

follow based on the aPTT entered in seconds: <40, 40–54, 55–69, 70–100, 101–115, 

116–130, 131–150, and >150. With a therapeutic aPTT goal between 70–100 seconds. 

Each pathway will have a different outcome that will provide an adjusted bolus dose, 

if needed, and notify the provider whether they should stop the infusion, change the 

rate, and what time to take another measurement. 

For adult DVT/PE dosing, the components are exactly the same. However, there are a 

couple of differences including the initial bolus and initial infusion values used in the 

calculations and the aPTT ranges that determine the calculator output. 

  

This figure depicts the workflow used to calculate the heparin initial bolus dose and initial infusion rate for 

adults. 
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2. Pediatric DVT/PE 

A similar workflow is utilized for the pediatric DVT/PE initial bolus dose and initial 

infusion rate yet there is one discrepancy. The initial infusion dose is based on whether 

the child is less than or greater than one year of age; therefore, an additional String 

Input node is utilized for the patient’s age. 

  

An example of the output text populated when the patient’s measured aPTT is above 150 seconds utilizing 

our post-aPTT dose adjustment calculator. 

This figure is an overview of the workflow to determine the post-aPTT dose adjustments for adult heparin 

dosing. 
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The aPTT ranges are slightly different from the ones seen in the adult general CV and 

DVT/PE calculators: <55, 55–69, 70–110, 111–125, 126–140, and >140. The 

therapeutic aPTT goal is broader at 70–110 seconds. In addition, the aPTT dose 

adjustments are based on rate change perchange.  

The calculator described above as well as other KNIME based workflows related to 

healthcare can be downloaded from our public Digital Healthcare from the KNIME 

Community Hub. 

 

Watch the presentation on YouTube: “2022 Fall - Data Science Elective Final Project - KNIME 

heparin calculator”.  

 

This figure depicts the workflow used to calculate the heparin initial bolus dose and initial infusion rate in 

pediatrics. Noting the additional string input for patient age. 

This figure is an overview of the workflow to determine the post-aPTT dose adjustments for pediatric 

heparin dosing. 

https://hub.knime.com/knime/spaces/Digital%20Healthcare/latest/~6caG4uvOJCyNpiW6/
https://youtu.be/gagrs08_VM8?si=5ID082vhdWo0hgD7
https://youtu.be/gagrs08_VM8?si=5ID082vhdWo0hgD7
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Track Disease with KNIME on COVID-19 Dashboard 

 

Author: Ali Asghar Marvi - KNIME 

Workflow on KNIME Community Hub: Covid-19 Dashboard Updated 

 

In early 2020, the world was hit by a deadly virus. It not only took millions of lives, but 

also crippled the global economy, bringing it to a standstill. Amid efforts to reduce the 

impact of the virus, Johns Hopkins University stepped in to track COVID-19 data from 

sources from across the world. It introduced a coronavirus tracker web service to 

query data, whether from the wider world or specific countries. This Swagger interface 

used to look through all web services definitions can be found here. 

There are two versions of these web services. The first version, or “V1,” has four REST 

endpoints, none of which take any input parameters. Anyone can query data for all 

countries for each date for the last two years, or simply get statistics on confirmed 

cases, recovered patients, or number of deaths reported so far. Version two, or “V2,” 

lets users query not only Johns Hopkins, but also the New York Times (NYT) and 

Conference of State Bank Supervisors (CSBS). However, NYT and CSBS return results 

for the USA only. Check out the Github documentation for a detailed description of the 

web services. 

Let me walk you through how I access the V2 web service using the GET Request nodes 

in KNIME and the two COVID-19 components I've built to create dashboards to track 

this disease. This dashboard can be deployed as a so-called data app, a browser-based 

application that can be used centrally or shared with others. 

Tracking Disease in the COVID-19 Dashboard 

I make a data query in KNIME using multiple GET Request nodes. In the first node 

(figure above), I call the “V2 latest” webservice to get the latest numbers on reported 

cases and deaths, both for the world as a whole and each individual country. The 

This figure depicts the abstract view of the dashboard workflow. 

https://www.linkedin.com/in/ali-asghar-marvi-81455413b/
https://hub.knime.com/knime/spaces/Digital%20Healthcare/Covid_19_Dashboard~IpGvukIqb2MvyG4K/current-state
https://coronavirus-tracker-api.herokuapp.com/
https://github.com/ExpDev07/coronavirus-tracker-api
https://www.knime.com/data-apps
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following component, “COVID-19 Main,” processes the output data and visualizes it. 

The second component, “COVID-19 Country,” calls another web service, “V2 locations,” 

to query country-specific data. The country is selected in the dropdown menu, and the 

corresponding data is visualized accordingly. 

Overview of Confirmed COVID-19 Cases to Date 

This dashboard has two parts. The “COVID-19 Main” component gives an overview of 

the total confirmed cases and total death cases to this day, and two choropleth maps 

show reported numbers normalized with respect to the population of the country up to 

the last 24 hours. One map reflects the confirmed cases, and another the deaths so 

far (figure below). 

Visualize Country-Specific COVID-19 Data 

The “COVID-19 Country” component returns country-specific data for the past two 

years. This dashboard has four important segments: 

• numbers reported each day over the last two weeks. 

• numbers reported in the last 24 hours 

Output of “COVID-19 Main” dashboard view. 
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• interactive line plot of cases in the selected country (left) 

• logarithmic scaled line plot of cases reported (right) 

This dashboard is visualized through a browser-based data app, but it can be also 

visualized locally on your machine as a local "Interactive View". 

 

This dashboard is inspired by COVID-19 Live Visualization using Guided 

Analytics and Visualize COVID-19 in Italy. 

This figure shows the numbers reported each day over the last two weeks (left) and numbers reported in 

last 24 hours (right).  

This figure shows the line plot for both confirmed and death cases reported (left) and the logarithmic 

scaled line plot (right).  

https://hub.knime.com/paolotamag/spaces/Public/latest/COVID-19_Live_Visualization~SjvvBM2fXG3APLP-
https://hub.knime.com/paolotamag/spaces/Public/latest/COVID-19_Live_Visualization~SjvvBM2fXG3APLP-
https://hub.knime.com/paolotamag/spaces/Public/latest/Visualize_COVID19_Italy~Tm8j2q8h6ngtGx9v
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Analyzing Digital Healthcare Data 

KNIME Analytics Platform supports data access from a wide variety of sources, both 

local and remote. This includes simple tabular files, databases, and even data 

warehouses. The visual workflows document how data is loaded but also provide an 

abstract understanding of how the data is blended – independent of size or type. The 

possibilities (not only in digital healthcare use cases) to load and process data are 

endless, especially concerning patient-specific data sources such as FHIR services, or 

open databases like Federal Adverse Event Reporting System (FAERS) and Vaccine 

Adverse Event Reporting System (VAERS). Once data is loaded, KNIME’s full potential 

can be exploited in terms of exploring the data, statistical analysis, creating predictive 

models, and deploying them as data apps or web services. 

This chapter includes the articles: 

• Interact with Epic on FHIR to visualize Patient Data, p. 36 

– Franziska Rau, KNIME & 

– Ali Asghar Marvi, KNIME 

• How to use FAERS for Adverse Reaction Management, p. 42 

– Lama Basalelah, Virginia Commonwealth University  

– Suad Alshammari, Virginia Commonwealth University 

– Joshua Morriss, Virginia Commonwealth University 

– Dayanjan Wijesinghe, Virginia Commonwealth University & 

– Franziska Rau, KNIME 

• Using KNIME to undertake Pharmacovigilance of Special Patient Populations, 

p. 46 

– Noah Frazier, Virginia Commonwealth University & 

– Dayanjan Wijesinghe, Virginia Commonwealth University 
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Interact with Epic on FHIR to visualize Patient Data 

 

Author: Franziska Rau &  Ali Asghar Marvi, KNIME 

Workflows on the KNIME Community Hub: Epic on FHIR Demo Dashboard  

 

Healthcare data is complex. It is stored in multiple places, in multiple computer 

systems, and comes from multiple departments. This makes it difficult to use, 

measure, and share. 

The Fast Healthcare Interoperability Resource (FHIR) was defined to improve data 

interoperability. It is one of the most popular protocols for joining disparate systems 

and it facilitates exchanging and sharing information on clinical health data and other 

electronic health records. It allows interoperability among healthcare systems to 

provide information to organizations and individuals on a wide variety of smartphones 

or computers. It also enables third-party vendors to create their own custom 

applications based on FHIR standards. 

In this article, we’d like to show how you can build a browser-based application with 

KNIME that accesses healthcare data via the FHIR-based API that is provided by Epic 

on FHIR. 

Application-based Interoperability for Seamless Data 

Exchange 

Many electronic health record systems utilize the FHIR standard and provide free 

resources for developers to create healthcare apps for patients and healthcare 

organizations. 

Note: FHIR utilizes an application programming interface (API) to exchange electronic 

health records (EHR) and electronic medical records (EMR). The protocol uses 

common standards such as JSON, XML, or RDF on REST-based protocols. 

Epic on FHIR or Cerner are examples of such free resources for developers. They 

provide not only FHIR-based resources, but also a complete set of additional features 

like dedicated servers, cloud services, sandbox data to play with, and much more. 

https://www.linkedin.com/in/franziska-rau-64b908197/
https://www.linkedin.com/in/ali-asghar-marvi-81455413b/
https://hub.knime.com/knime/spaces/Digital%20Healthcare/EPIC%20on%20FHIR%20(Patient%20Dashboard)~_Iwh4-1tnyV4F9_f/current-state
https://fhir.epic.com/
https://fhir.cerner.com/
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The Epic-on-FHIR Sandbox Environment 

In this article, we will talk about how we accessed example data using the FHIR-based 

APIs provided by Epic on FHIR and consolidated and visualized it in a dashboard. 

The Sandbox Test Data by Epic consists of a set of patients, each with a unique FHIR 

ID and corresponding resources of their medical history. In the screenshot below you 

can see there is a test patient called Derrick Lin with a FHIR ID and portal login 

credentials for the sample patient application. 

Application credentials are for testing by developers, however we want to talk more 

about the applicable resources against the FHIR ID, and demonstrate how we called 

some of them in KNIME and visualized it all in a consolidated dashboard. 

How to Call Epic-on-FHIR Web Services in KNIME 

The first and most important step is to create an account on Epic on FHIR. Once that’s 

done, head to the “API Specifications” tab on the menu bar to see the list of available 

APIs (figure below). 

For our example, we will only call four web services: 

• Patient.Read (R4) - basic patient information like name, age, address and more 

• Condition.Search (R4) - all past conditions of a patient 

• MedicationRequest.Search (Orders) (R4) - medication prescription based on 

conditions 

• Goal.Search (Patient) (R4) - medical prescription of various therapies 

Each service is based on the R4 version of HL7 for data interoperability. It takes the 

patient's FHIR ID as input, and the relevant data is returned in XML format. It is 

subsequently converted into JSON format to extract the necessary fields, and finally, 

visualized in KNIME. 

Sample of FHIR patients from the sandbox environment provided by EPIC. 

https://fhir.epic.com/Documentation?docId=testpatients
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Web Services for Patient Conditions, Prescriptions, and Health Goals 

Web services or APIs are called into KNIME and parsed to extract the information we 

want to visualize. In our example, we used the FHIR ID of the test patient, Derrick Lin. 

This patient is fictitious and is from the Sandbox environment provided by Epic. 

In order to call each web service, Epic requires a bearer token to be sent as header. 

You’ll see the bearer token in the Raw Request (below) of any selected API from the 

list (above). The workflow requires that you add this token in the configuration window, 

and it is propagated as a flow variable for each web service call.  

 

 

 

 

Snippet showing the huge list of web services available (left) in EPIC on FHIR 
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Let’s now have a closer look at these web services.  

Patient.Read (R4) for Basic Patient Information.  

This web service is called in KNIME using the GET Request node. The xml returned is 

converted to JSON format, and necessary fields are picked using the JSON Path node. 

The extracted fields include “Official Name,” “Date of Birth,” “Sex,” etc. This is the 

demographic and administrative information of the person receiving healthcare from 

the organization.  

This is the REST endpoint for the patient. The part highlighted blue is the FHIR ID of the 

patient. 

https://fhir.epic.com/interconnect-fhir-oauth/api/FHIR/R4/Patient/eq081-VQE

gP8drUUqCWzHfw3 

Condition.Search (R4) for a Patient’s Previous Conditions 

Similarly to calling a patient's rest-based endpoint, the “Condition” web service 

searches for the condition and diagnosis of a given patient, along with their clinical 

status and reason for visit – in this case for “Derrick.” The parsed data is visualized 

inside the view component. This web service takes in a patient’s FHIR ID as a search 

parameter. 

This is the REST endpoint to search for a condition of a given patient. 

https://fhir.epic.com/interconnect-fhir-oauth/api/FHIR/R4/Condition?patient

=eq081-VQEgP8drUUqCWzHfw3 

 

Bearer token from trying out a patient’s web service. 
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MedicationRequest.Search (Orders) (R4) for Medication Prescriptions 

Based on the diagnosis, a patient is prescribed medication or any relevant therapy 

along with dosage by the practitioner. In this case, this web service returns the 

medication request by the patient. This could be used by relevant pharmacies or 

medical institutions to keep track of a patient’s consumption. The rest endpoint (in 

screenshot below) takes in the patient's FHIR ID as a search parameter in the form of 

a query parameter. 

The REST endpoint to search for a prescribed mediation of a given patient.  

https://fhir.epic.com/interconnect-fhir-oauth/api/FHIR/R4/MedicationRequest

?patient=eq081-VQEgP8drUUqCWzHfw3 

Goal.Search (Patient) (R4) for the Targeted Health Outcome 

Every prescribed medication has an end goal associated with a patient: Obviously, an 

improvement of their existing conditions. The “Goal” rest service is called to identify 

desired health outcomes associated with Derrick. This rest point also takes in the 

patient's FHIR ID as a search input (see below). 

The REST endpoint to search desired health goal of a given patient. 

https://fhir.epic.com/interconnect-fhir-oauth/api/FHIR/R4/Goal?patient=eq08

1-VQEgP8drUUqCWzHfw3 

Visualizing Healthcare Data in a Dashboard 

After consuming all the rest points and parsing the necessary information, we 

visualized it using Tile View for each category. All tiles are put together inside a 

component and organized to view it in one consolidated dashboard. To learn more 

about creating a dashboard in KNIME, this blog will help you understand its 

fundamentals. 

 

 

 

https://www.knime.com/blog/how-to-create-an-interactive-dashboard-in-three-steps-with-knime
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An EPIC-on-FHIR Patient Dashboard 

In summary we can say that we have successfully accessed several EPIC on FHIR 

services in KNIME to visualize a sample patient from a sandbox environment. 

However, it is important to note that for production-based environments, any health 

institution using EPIC on FHIR needs to have a middleware to cater for authentication 

issues – such as getting access tokens in this case. The visualization in KNIME will be 

the final step. 

Try out our example workflow for this dashboard and download it from the KNIME 

Hub: EPIC on FHIR (Patient Dashboard). 

  

Consolidated visualization of data from each EPIC on FHIR service. 

https://hub.knime.com/knime/spaces/Digital%20Healthcare/EPIC%20on%20FHIR%20(Patient%20Dashboard)~_Iwh4-1tnyV4F9_f/current-state
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How to use FAERS for Adverse Reaction 

Management 

 

Authors: Dayanjan Wijesinghe, Lama Basalelah, Suad Alshammari, & Joshua Morriss - Virginia 

Commonwealth University, Franziska Rau, KNIME 

Workflows on the KNIME Community Hub: FAERS Data Download and FAERS Data Processing Loperamide 

Hypothesis Testing on FAERS Data and Using it for Adverse 

Reaction Management 

Every quarter the FDA (Food and Drug Administration) provides reports about adverse 

events, medication errors, and product quality complaints. The system used for that is 

the Federal Adverse Event Reporting System (FAERS) which is a database designed to 

support the FDA’s pharmacovigilance program for adverse events in response to drug 

and therapeutic biologic products and medication errors. Adverse events are 

associated with the use of medical products leading to unintended symptoms or 

diseases, often with harmful consequences. 

We wanted to demonstrate a proof of concept application for accessing and analyzing 

FAERS data to test various hypotheses. Here we demonstrate the use of KNIME and 

FAERS to investigate the effects the medications Irinotecan and Loperamide have on 

Intestinal toxicity. 

Irinotecan Medication for Cancer Treatment 

Irinotecan has been used for the treatment of a number of solid tumors, including lung, 

colorectal, and pancreatic tumors. Its primary mode of action is via the inhibition of 

the topoisomerase I enzyme, which is responsible for DNA replication and 

transcription that causes cancer cells to survive and proliferate7. 

One of the serious dose-related toxicities is intestinal toxicity, in which a patient suffers 

from life-threatening conditions like diarrhea, depletion in fluid and electrolytes, and 

hospitalization. 

 
7 de Man FM, Goey AKL, van Schaik RHN, Mathijssen RHJ, Bins S. Individualization of Irinotecan Treatment: 

A Review of Pharmacokinetics, Pharmacodynamics, and Pharmacogenetics. Clin Pharmacokinet. 2018 

Oct;57(10):1229-1254. doi: 10.1007/s40262-018-0644-7. PMID: 29520731; PMCID: PMC6132501. 

https://www.linkedin.com/in/dayanjanwijesinghe/
https://www.linkedin.com/in/lama-basalelah-8b1411136/
https://www.linkedin.com/in/suad-alshammari-298347151/
https://www.linkedin.com/in/joshua-morriss/
https://www.linkedin.com/in/franziska-rau-64b908197/
https://hub.knime.com/knime/spaces/Digital%20Healthcare/Hypothesis%20Testing%20on%20FAERS%20data/FAERS%20Data%20Download~Fu9Dhoz276cwaupJ/current-state
https://hub.knime.com/-/spaces/-/~VMK7C5pX1qHgCrAH/current-state/
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Intestinal toxicity has two phases: 

• Early-onset diarrhea, which usually happens within 24 hours. This usually 

happens due to the cholinergic properties and is usually accompanied by other 

cholinergic symptoms like abdominal cramps. 

• Late-onset diarrhea occurs 24 hours after administration. The luminal irinotecan 

metabolites induce mucosal damage-causing malabsorption and imbalance with 

water and electrolytes. 

Eventually, the gut-bacterial β-glucuronidase converts the irinotecan metabolite 

SN38G into an active form of SN38 that causes luminal damage and diarrhea8. 

Thus, a question we can ask is: Are there any medications, which, when administered 

with Irinotecan, have the potential to negate the onset of intestinal toxicity? 

To answer this question, we tested the hypothesis that Irinotecan-driven intestinal 

toxicity is negated by the co-occurrence of Loperamide, a treatment used to treat 

diarrhea, which is discussed in the paper9. 

Our main hypothesis for testing is: 

1. The number of Irinotecan-driven Intestinal toxicity cases is reduced with co-

occurrence Loperamide 

Which leads us to two sub-hypotheses: 

1. The count of Loperamide use should be lower in those reporting intestinal toxicity 

and Irinotecan 

2. The count of Loperamide use should be lower in those reporting Intestinal 

toxicity-related events and Irinotecan. 

Hypothesis Testing on Adverse Events 

First of all, we downloaded the data from the FDA website. The data from every quarter 

needs to be downloaded separately and contains multiple files including demographic 

information, drug and reaction information from case reports and patient outcome 

information.  

 
8 Stein A, Voigt W, Jordan K. Chemotherapy-induced diarrhea: pathophysiology, frequency and guideline-

based management. Ther Adv Med Oncol. 2010 Jan;2(1):51-63. doi: 10.1177/1758834009355164. PMID: 

21789126; PMCID: PMC3126005. 

9 Alimonti A, Gelibter A, Pavese I, Satta F, Cognetti F, Ferretti G, Rasio D, Vecchione A, Di Palma M. New 

approaches to prevent intestinal toxicity of irinotecan-based regimens. Cancer Treat Rev. 2004 

Oct;30(6):555-62. doi: 10.1016/j.ctrv.2004.05.002. PMID: 15325035. 

https://fis.fda.gov/
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After reading in all the different CSV files, we grouped the patients by medication to 

get a general overview. 

Group 1 includes all patients that took Irinotecan, Group 2 Irinotecan and Loperamide 

and Group 3 only Loperamide as medication. 

We took data from 2015 through to Q3/2021. It indicated that simultaneous intake 

prescription of Irinotecan and Loperamide is not as common as taking both medicines 

by themselves. 

Afterwards we counted all the severe adverse events for both groups. As you can see 

in the following figure, the patients who only took Irinotecan showed significantly more 

adverse events than those who took Irinotecan and Loperamide in combination. 

The analysis also shows us that more patients suffered from intestinal toxicity when 

using only Irinotecan as medication in comparison with patients who also took 

Loperamide in combination, seen in figure below. 

Severe adverse events for Irinotecan only and in combination with Loperamide. 

View of the overall workflow. 
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Download and Query of FAERS Data Easily with KNIME 

In summary, the workflow allows us to easily query the downloaded FAERS data for 

specific hypotheses testing. Download our publicly available workflows to use as your 

own starting point for processing FAERS data. 

 

Cases of hypertension using Irinotecan without and with Loperamide. 

https://hub.knime.com/-/spaces/-/latest/~eSsLuvd_dLVsKgbT/
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Using KNIME to undertake Pharmacovigilance of 

Special Patient Populations 

 

Authors: Dayanjan Wijesinghe &  Noah Frazier - Virginia Commonwealth University 

Workflow on the KNIME Community Hub: Using VAERS for pharmacovigilance of special populations 

 

Note. Please use this story only as a guide to create your own workflows 

with KNIME. The results of this brief analysis have not been validated by 

independent review, and is only meant to be used as a demonstration of the 

capabilities of KNIME for pharmacovigilance towards vaccines in special 

populations. 

 

Adverse events are an undesirable effect of a drug or other type of treatment. They can 

range in severity from mild to life threatening. The U.S. Food and Drug Administration 

(FDA) and drug manufacturers regularly monitor a drug’s adverse events during clinical 

trials and post FDA approval. Post-marketing surveillance is important because there 

is a greater diversity in patients taking the medication compared to the clinical trial 

population. An increase in frequency of adverse events reported can result in a drug 

label change or even removal from the market. 

The Vaccine Adverse Event Reporting System (VAERS) is a database of reported 

adverse events following immunization from U.S. licensed vaccines. VAERS serves the 

purpose of an early warning system for the U.S. to ensure vaccines are a safe tool for 

immunization. Us and others have previously demonstrated in multiple instances the 

data mining capabilities of KNIME with respect to healthcare. Thus, we wanted to test 

the feasibility of using KNIME to monitor adverse events from special populations in 

response to vaccines for use as a post market surveillance tool. 

Special populations are often excluded from clinical trials due to the complexity they 

may present when interpreting clinical trial results. With rigorous pharmacovigilance 

tools, we can identify trends and prevent potential harm to patients with unique 

underlying health conditions. In our proof of concept, we wanted to monitor what 

adverse events have been reported to VAERS from patients who have been diagnosed 

with multiple sclerosis and received the COVID-19 vaccine. 

https://www.linkedin.com/in/dayanjanwijesinghe/
https://www.linkedin.com/in/lama-basalelah-8b1411136/
https://hub.knime.com/knime/spaces/Digital%20Healthcare/Pharmacovgilance%20of%20Special%20Populations/Pharmacovigilance%20of%20special%20populations%20using%20KNIME~5oMtl8T-yFEPdkVm/current-state
https://www.knime.com/knime-analytics-platform?utm_source=medium&utm_medium=organic&utm_term=&utm_content=&utm_campaign=com_journal
https://www.knime.com/knime-analytics-platform?utm_source=medium&utm_medium=organic&utm_term=&utm_content=&utm_campaign=com_journal
https://vaers.hhs.gov/
https://hub.knime.com/knime/spaces/Digital%20Healthcare/latest/~6caG4uvOJCyNpiW6/
https://hub.knime.com/knime/spaces/Digital%20Healthcare/latest/~6caG4uvOJCyNpiW6/
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Multiple Sclerosis and the COVID Vaccine 

Multiple sclerosis is a neurological disease that eats away at the protective covering 

of nerves. MS ultimately disrupts the communication pathway in the nervous system: 

potentially resulting in a disabled individual. 

The COVID vaccines were designed as a tool to combat the COVID-19 pandemic our 

society was faced with. Given the situation of the crisis, the COVID vaccines were 

developed and approved in the US in an accelerated fashion. It is important for 

regulators, healthcare providers, and patients to be able to characterize the safety of 

the COVID vaccines for patients with multiple sclerosis. 

KNIME Workflow 

To start out, we downloaded the adverse events that were reported for the year 2022 

from VAERS. The files were too large for an Excel spreadsheet to be used, so the data 

was saved as a CSV format. VAERS segments their data into 3 different files. One file 

pertains to patients’ demographics, another file provides information on the vaccine 

received, and the last file contains data about the adverse events reported. The tables 

were joined and the rows were aligned by the unique VAERS ID each report receives.  

The data was cleaned in a series of steps of removing duplicate rows, rows with 

missing data, and columns that did not pertain to this analysis.  

VAERS data tables were combined by aligning their unique VAERS ID. 
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To identify our special population of patients with multiple sclerosis, we had to 

standardize the spelling of multiple sclerosis to “MS”. Since VAERS reported incidents 

are inputted from the public, there were different spellings of multiple sclerosis i.e., 

“MS”, “ms”, “multiple sclerosis”, or “Multiple Sclerosis”. After standardizing the spelling 

Illustration of steps needed to clean VAERS data. 

Illustration of how using the string manipulation 

node, we were able to standardize the spelling of 

multiple sclerosis to MS. The string manipulation 

node was also used to identify our special population 

data. 
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of multiple sclerosis and identifying which rows contained MS, we filtered out all 

unnecessary rows. 

There are many ways to analyze the data of adverse events reported. As a starting 

point, we wanted to quantify the adverse events reported for patients with multiple 

sclerosis that received the COVID vaccine. The data was configured in a way so it 

would be compatible with the Bag of Words Creator node. This node was chosen 

because it breaks down the data in an easy to quantify format. The data output of this 

node was exported to an Excel sheet where a pivot table was created. 

Results from the pivot table. 

Illustration of steps needed to configure data in format compatible with the Bag of Words Creator 

node. 
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Overall, this exercise demonstrates the ease by which KNIME can be utilized to create 

pharmacovigilance tools for special populations. 

 

A video demonstration of Dr. Noah Frazier demonstrating how he is using KNIME 

to undertake the above workflow on YouTube: “Using KNIME to undertake 

Pharmacovigilance of Special Patient Populations”. 

https://www.youtube.com/watch?v=A1s6803oEGA
https://www.youtube.com/watch?v=A1s6803oEGA
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Deep Learning for Digital Healthcare 

While KNIME provides a plethora of statistical and machine learning methods out-of-

the-box, it also allows users to effortlessly benchmark methods and integrate cutting-

edge technologies like deep learning into their projects. With its two deep learning 

extensions, based on Keras and Tensorflow, users cannot only apply or finetune pre-

trained models but also build and train their custom networks without coding. 

This chapter shows how codeless deep learning can benefit digital healthcare 

applications like predicting blood glucose levels or discriminating normal and 

abnormal ECG for detecting arrhythmia. 

This chapter includes the articles: 

• Predict Blood Glucose with an LSTM on CGM Data, p. 52 

– Franziska Rau, KNIME 

• Learn how to classify Electrocardiogram Signals with Deep Learning in KNIME, 

p. 59  

– Ali Asghar Marvi, KNIME 

• How to perform Electrocardiogram Categorization and Detect Arrhythmia, p. 67 

– Ali Asghar Marvi, KNIME 
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Predict Blood Glucose with an LSTM on CGM Data 

 

Author: Franziska Rau, KNIME 

Workflow on the KNIME Community Hub: Glucose Level Prediction 

Processing Continuous Glucose Monitoring (CGM) Data for 

Digital Healthcare on KNIME Hub 

The number of people suffering from diabetes is increasing drastically worldwide. 

Devices called Continuous Glucose Monitors (CGMs) exist to help make the everyday 

lives of diabetics easier. These tiny sensor wires are inserted under the skin, and then 

record blood sugar (glucose) levels at certain time intervals, transmitting the data to 

an app or software. This way, a user can see their current and past blood glucose 

levels. But wouldn’t it be great to know your future levels as well? 

To that end, I trained an LSTM network with existing CGM data to predict future blood 

glucose levels. This makes it possible to recognize early on whether your sugar levels 

could rise or fall drastically, enabling rapid intervention. It’s a great way to make 

everyday life easier for diabetics, and I'll show you how to do it in KNIME. You can 

already see the complete workflow in the figure below. 

 

The whole prediction workflow, containing data reading, feature exploration, input generation, model 

training, and testing and deployment. 

https://www.linkedin.com/in/franziska-rau-64b908197/
https://hub.knime.com/knime/spaces/Digital%20Healthcare/Glucose%20Level%20Prediction~UVq9wekWg2dvrx4h/current-state
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Continuous Glucose Monitoring 

There are two types of diabetes: Type 1, in which the body does not produce enough 

or any insulin, and Type 2, in which the body doesn't use insulin properly10. Type 2 is 

the most common form of diabetes, and some people can manage their blood sugar 

levels with a healthy diet and exercise. Others may need insulin to help control their 

blood sugar levels. For them, keeping track of their blood sugar is a crucial everyday 

task. 

In this post, we will look at the D1NAMO dataset, which contains CGM blood glucose 

measurements and insulin dose data from Type 1 diabetes patients. The cool thing is 

that it contains data not only from CGMs, but also motion sensors. The participants 

were each monitored using the Zephyr BioHarness 3 wearable chest belt device, which 

recorded information on their hearts, respiration rates, and body acceleration. 

Currently, software/apps which use CGMs to display one’s blood glucose levels can 

only show the past and current values. But wouldn’t it be helpful to know the future 

values as well? With this information, a diabetic could know if their blood sugar level 

will soon rise or sink. In my workflow, I used an LSTM network to make these kinds of 

predictions. 

Visualizing CGM and Sensor Data 

To explore the different features, I created an interactive view via a component which 

shows the different measurements, as seen in following figure. It shows 

measurements from "Diabetes_Patient_1" on October 1st, but you can also view other 

patients and dates. This is possible by combining several Line Plots that operate on 

the same data table and additional Value Selection Widgets, which allow me to filter 

the data directly in the view. I also used a new widget, the Refresh Button. With this, 

you no longer have to close your view to apply new settings. 

I included the features “heart rate,” “breathing rate,” “activity,” and “peak acceleration 

over time” in this view. “Activity” and “peak acceleration” refer to the mean and 

maximum acceleration magnitude measured by the sensor. Insulin values are also 

included, showing how much fast or slow insulin was injected at which time. 

But the dataset includes more sensor data as well. If you are interested in exploring 

the whole set or learning more, read “The open D1NAMO dataset: A multi-modal 

dataset for research on non-invasive type 1 diabetes management” from 

 
10  Diabetes Symptoms, Causes, & Treatment. (n.d.). American Diabetes Association from 
https://www.diabetes.org/diabetes 

https://kni.me/n/bQq5_aSoGptcciRV
https://kni.me/n/Jzib6nQH9guqK6yC
https://kni.me/n/EcMfHYYNQJgJmaas


Deep Learning for Digital Healthcare 

Predict Blood Glucose with an LSTM on CGM Data 

54 

Dubosson11.To keep things simple, I continued with only the blood glucose values for 

my prediction, because usually diabetic patients don’t wear any monitoring devices 

besides a CGM. But if you like challenges, you could try to use all the features for your 

own prediction. 

Blood Glucose Prediction using Many-to-Many LSTM 

Before we look at the model, we have to generate the appropriate input data. 

 
11 Dubosson, F. (2018). The open D1NAMO dataset: A multi-modal dataset for research on 
non-invasive type 1 diabetes management. Informatics in Medicine Unlocked, Volume13(-), 
Pages92-100. https://www.sciencedirect.com/science/article/pii/S2352914818301059 

Interactive view of the CGM and sensor data. Within this view, you can select a patient and a date to look 

at. 
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A helpful post by Kathrin Melcher shows an example of Multivariate Time Series 

Analysis with LSTMs using a Many-To-One network architecture. She explains the 

input generation and the LSTM model in more detail. I used a "Many-To-Many" model 

architecture, which needs the input and target values as sequences of vectors. Figure 

below shows the "Input generation" component content. 

At each iteration, the data of one patient is processed. The Lag Column node in the 

loop body creates the sequence of n=5 past values of the current column by setting a 

lag value of 5. The times series produced by the Lag Column node follows this order: 

At each iteration, the data of one patient is processed. The Lag Column node in the 

loop body creates the sequence of n=5 past values of the current column by setting a 

lag value of 5. The times series produced by the Lag Column node follows this order: 

𝑥𝑡0
 𝑥𝑡0−𝑡1

 𝑥𝑡0−𝑡2
 𝑥𝑡0−𝑡3

 𝑥𝑡0−𝑡4
 𝑥𝑡0−𝑡5

  

The network needs a sequence in time increasing order, such as: 

𝑥𝑡0−𝑡5
 𝑥𝑡0−𝑡4

 𝑥𝑡0−𝑡3
 𝑥𝑡0−𝑡2

 𝑥𝑡0−𝑡1
 𝑥𝑡0

  

The Resort Columns metanode resorts the sequence appropriately. The output of the 

Loop End node has the sorted sequences of feature vectors and the corresponding 

target vectors. 

In my example, the input vectors contain samples with three time steps each, while the 

output has the next three consecutive timesteps. This corresponds to a 15-minute 

input window and a 15-minute prediction window. 

Afterward, the data is split into training and test sets by taking 80% of the data for each 

patient from the top as training set and the remaining 20% as test set. Keep in mind 

that since this is time series data, you don’t want to take random samples. Additionally, 

I did not include "Diabetes_Patient_008" in the training/testing process. This patient 

will be used for validation purposes. 

The Long Short-Term Memory (LSTM) network is a type of recurrent neural network, 

often used in deep learning because even very large architectures can feasibly be 

trained with it. It is commonly used for time series prediction. 

Instead of neurons, LSTM networks have memory blocks that are connected through 

layers. A block has components that make it smarter than a classical neuron and give 

it a memory for recent sequences. I won’t go into detail, but if you are interested, read 

this great blog post about LSTMs. 

Input generation for a “Many-to-Many” LSTM architecture. 

https://www.knime.com/blog/multivariate-time-series-analysis-lstm-codeless
https://www.knime.com/blog/multivariate-time-series-analysis-lstm-codeless
https://kni.me/n/RurwVi1VODgLDTQP
https://www.knime.com/blog/multivariate-time-series-analysis-lstm-codeless
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The network I used consists of five layers, as seen in figure below: 

 

The five layers in detail: 

1. An input layer to define the input shape implemented via a Keras Input Layer 

node. The input shape is a tuple, represented as n, m, where n is the length of the 

sequence and m is the size of the feature vector at each time step. In this 

example, the input shape is 3,1 (three time steps of 5 minutes and one feature 

(glucose level)). 

2. An LSTM layer implemented via a Keras LSTM Layer node, using 100 units (length 

of the vector in hidden state) and "ReLu" as its activation function. 

3. A Repeat Layer that repeats the input three times. The Repeat Layer adds extra 

dimensions to the dataset. 

4. A second LSTM layer using 100 units and "ReLu" activation function. This time 

the "Return sequences" option is enabled (this returns the hidden state output for 

each input time step). 

5. A Dense Layer that connects each unit of the layer input with each output unit of 

this layer. This generates an output of the shape 3,1 (like the input shape) 

Using a Keras Network Learner node, the created model can be trained. I trained the 

model for 100 epochs, and then used the Keras Network Executor node on the test and 

validation set. 

To view the results, I again created an interactive view, which makes it possible to 

select the different patients and plot the corresponding result. Figure below shows an 

example result for “Diabetes_Patient_001." 

Different Keras Layers that make up the final model. 

https://kni.me/n/gBcnCH3jxYRg-G25
https://kni.me/n/gu15eQojjTUSK9I-
https://kni.me/n/1gXuTeAze8RuIoEl
https://kni.me/n/GubcYb-AtuxUkunf
https://kni.me/n/qlYyXQ_chx_mCHSv
https://kni.me/n/EC5PbRTxi4FtcOmy
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The Root-Mean-Squared-Error (RMSE) score is 0.36, which is pretty good and means 

that the difference between the actual and predicted data is not that big. This can also 

be seen in the line plot, showing the actual and the predicted glucose values. 

Let’s see if the results also look this good by using the validation data. I used 

"Diabetes_Patient_008" for this. Figure below shows the actual and predicted glucose 

values for "Diabetes_Patient_008" on October 2nd. You can select different dates to 

make the view more clear, but the overall RMSE value for the validation data is 0.33. 

Pretty good! 

 

 

 

 

 

 

 

Results for “Diabetes_Patient_1,” with an RMSE score of 0.36. 
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If you want to see more results, check out the workflow and play around with it yourself. 

Now that it’s been trained and tested, the model can be deployed for further purposes. 

CGM Data Prediction – The Everyday Helper 

CGMs can do a lot to help someone keep track of their blood glucose levels during the 

day. Future blood glucose predictions can help even more. With this, diabetic people 

could, for example, estimate whether they’ll need insulin in the next 15 minutes. In this 

post, you saw how a Many-to-Many LSTM network can be used for such predictions. 

Check out the Digital Healthcare space on the KNIME Hub for more workflows to 

download and use yourself. Thanks for reading! 

Results for “Diabetes_Patient_8,” with an RMSE score of 0.33. In the view, you can select different dates. In 

this example, I selected October 2nd. 
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Learn how to classify Electrocardiogram Signals with 

Deep Learning in KNIME 

 

Author: Ali Asghar Marvi, KNIME 

Workflow on the KNIME Community Hub: ECG Heartbeat Classification Dataset (PTB) 

Use a Deep Learning Solution in KNIME to Classify Heart 

Signals 

ECG – it's the abbreviated term for electrocardiogram, an electrogram that records 

heartbeats. ECG tests are one of the most commonly performed tests to detect heart 

problems and monitor heart health: Over 100 million are performed annually in the US 

alone. 

The graph produced is a time series of voltage recorded by electrodes placed on the 

patient’s skin. The electrodes detect slight changes in the activity of cardiac muscle 

depolarization, followed by repolarization across every cardiac cycle. The changes in 

signal pattern correspond with various cardiac abnormalities, deficiencies in blood 

flow through the heart, or electrolyte disbalance. The figure below shows various leads 

of a sample ECG reading. 

In this section, I'd like to give you a walkthrough of an example KNIME workflow that 

uses deep learning for Electrocardiogram (ECG) classification of normal and abnormal 

signals. The signals are sampled from Physionet’s ECG Database, which is contributed 

by Physikalisch-Technische Bundesanstalt (PTB). The preprocessed version of the 

dataset is available on Kaggle. For my example here, I used the files 

“ptbdb_abnormal.csv” and “ptbdb_normal.csv.” 

https://www.linkedin.com/in/ali-asghar-marvi-81455413b/
https://hub.knime.com/knime/spaces/Digital%20Healthcare/ECG%20Arrythmia%20Detection/ecg_cnn_ptb~f2Rwl7f4j6wTdUxI/current-state
https://en.wikipedia.org/wiki/Electrocardiography
https://en.wikipedia.org/wiki/Electrogram
https://en.wikipedia.org/wiki/Cardiac_muscle
https://en.wikipedia.org/wiki/Depolarization
https://en.wikipedia.org/wiki/Repolarization
https://physionet.org/content/ptbdb/1.0.0/
http://www.ptb.de/
https://www.kaggle.com/shayanfazeli/heartbeat
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Pre-processing of ECG Signals 

Before we dive further into the analysis, I will talk about the pre-processing techniques 

used by authors Mohammad Kachuee, Shayan Fazeli, and Majid Sarrafzadeh to 

provide complete consolidated CSV files. They applied an effective method for pre-

processing signals and extracting beats from them. 

To begin, ECG signals are split into 10-second windows, and their amplitude values are 

normalized between 0 and 1. First derivative of zero-crossing is applied on each 

window to find local maximums. Then R-peaks are identified, and a median R-R time 

interval (T) is extracted for each window. The R peak is essentially the highest peak of 

an ECG signal. It is identified using wavelet transformation and is part of the QRS-

complex, an oscillation corresponding to contraction and expansion of ventricles and 

atria, respectively. 

 

 

 

 

 

 

 

Abnormal ECG reading in a young patient with shortness of breath. 

https://en.wikipedia.org/wiki/Zero_crossing
https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.118.036273


Deep Learning for Digital Healthcare 

Learn how to classify Electrocardiogram Signals with Deep Learning in KNIME 

61 

 

QRS-Complex 

A 10-second sample from the ECG signal and extracted 

beat from it. Pre-processed output from the paper “ECG 

Heartbeat Classification: A Deep Transferable 

Representation.” 

https://en.wikipedia.org/wiki/QRS_complex
https://arxiv.org/pdf/1805.00794.pdf
https://arxiv.org/pdf/1805.00794.pdf
https://arxiv.org/pdf/1805.00794.pdf
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For each R-peak, a signal of length 1.2T is selected and padded with zeros to produce 

a complete signal of fixed length. The sample data is visualized in figure above. 

There are two files of PTB ECG datasets provided by the authors. One contains 

abnormal readings with class variable 1 and is named “ptbdb_abnormal.csv,” and the 

other contains normal readings with class variable 0 and is named “ptbdb_normal.csv.” 

Each file has 188 columns; the last column is the class variable, and the rest represent 

the signal length, padded with zeros for fixed length. There are no missing values in 

each column. However, the dataset in total is imbalanced, where abnormal readings 

are 10,506 and normal readings are 4,046. 

Exploratory Data Analysis 

Both datasets were concatenated and shuffled into one table. KNIME provides a 

Statistics node in its KNIME Statistics Nodes Extension. This node is used to describe 

each column and its respective characteristics. As seen in the figure below, it can be 

confirmed that there are no missing values in the table. Histograms in each row show 

the distribution of values in respective columns. Class imbalance is also visible in the 

bottom part of the figure. 

 

Numerical tab describing statistics of numerical columns. 

The Nominal tab describing statistics of class column. 

https://hub.knime.com/knime/extensions/org.knime.features.stats/latest
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Two beats sampled from each class were also visualized in a line plot, one being the 

normal and the other the abnormal signal. The abnormal reading has very short peaks 

and highly fluctuates compared to the normal beat, which is relatively stable and 

smooth. 

Modeling 

As described in the research paper by the authors of this dataset, a 1-D Convolutional 

Neural Network (CNN) architecture is trained to classify ECG beats. The original 

architecture proposed is quite deep, and took almost two hours to train on an 8GB 

NVIDIA GPU. For this example, I used a small subset of the proposed architecture with 

three hidden stacks between input and output layer. The Neural Network was created 

using the KNIME Deep Learning – Keras Integration. 

Deep Neural Network 

The input layer had the shape of (1,187), representing the 187 columns and one-

dimensional series, i.e. the time series as input and output of two units corresponding 

to each class. 

Hidden Stack 1 

As shown in figure below, after the input layer, three hidden layers are added in the first 

stack. The first layer is a Keras Conv1D Layer using RELU as its activation function, 64 

Two line plots for sample abnormal (left) and normal (right) reading. 

First stack of hidden layers. 

https://arxiv.org/pdf/1805.00794.pdf
https://hub.knime.com/knime/extensions/org.knime.features.dl.keras/latest
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filters, a kernel size of 6, strides of 1, and padding set to “same.” It is followed by a 

Keras Batch Normalization Layer node to speed up the training process, then a Keras 

Max Pooling Layer with pool size of 3 and strides of 2. 

Hidden Stack 2 

As shown in the next figure, after the first hidden stack in figure above, three hidden 

layers are added in the second stack. The first layer is a Keras Conv1D Layer using 

RELU as its activation function, 64 filters, a kernel size of 3, strides of 1, and padding 

set to “same”. It is followed by a Keras Batch Normalization Layer node, then a Keras 

Max Pooling Layer with pool size of 3 and strides of 2. 

Hidden Stack 3 

For the third and final hidden stack, no more 1D Convolutional Layers are added. 

Instead it’s a flattened layer, followed by a Dense Layer of 64 units, then a Dense Layer 

of 32 units before the output layer. 

 

Second stack of hidden layers. 

Third stack of hidden layers 
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Model Training 

Before I describe the training 

process, know that data in KNIME 

was slightly preprocessed. This 

includes adjusting class 

imbalance by oversampling 

minority class. After that, the class 

variable was one hot encoded for 

the model, and the data was 

partitioned into 80% for training 

and 20% for testing. 

The Keras Network Learner node is 

used to train the model. Since we 

have a binary classification 

problem, the loss measure used is 

“Binary cross entropy”. The model 

was trained for a total of 10 

epochs with an Adam optimizer 

with relevant parameters. The 

entire training process took 1 

minute and 22 seconds.  

 

Model Scoring 

Predictions were made using the Keras Network 

Executor node. Predictions with maximum 

probability with respect to each class were picked 

using the Many to One node. Finally, the model 

performance was evaluated using the Scorer 

node. As seen in the next figure, the model 

performed with the accuracy of 94.7%, with 3,979 

rows correctly identified and 224 rows incorrectly 

identified.    

Options tab of Keras Network Learner. 

Scorer output for model performance. 

“0.0” corresponds to normal class, while 

“1.0” corresponds to abnormal class. 
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ECG Classification with KNIME 

ECG classification was performed using a Deep Neural Network composed of 1-

Dimensional Convolutional Layers, along with Batch Normalization Layers and Max 

Pooling Layers. The data provided was picked from Kaggle, and was already pre-

processed by the authors, so not much needed to be done in that area. The complete 

workflow can be found on the KNIME Hub in our public Digital Health space. The 

workflow group comprising the PTB classification on KNIME Hub is “ECG PTB and MIT-

BIH Data Analysis & Modeling.” Following figure shows the main workflow of the ECG 

classification using PTB dataset. 

This part of our analysis catered to the binary classification problem of normal and 

abnormal beats. In the next part, I will discuss multiclass classification of a different 

ECG dataset which detects arrhythmia. 

 

 

Complete workflow of the ECG - PTB Classification 

https://kni.me/w/f2Rwl7f4j6wTdUxI
https://kni.me/w/f2Rwl7f4j6wTdUxI
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How to perform Electrocardiogram Categorization 

and Detect Arrhythmia 

 

Author: Ali Asghar Marvi, KNIME 

Workflow on the KNIME Community Hub: ECG MIT-BIH Data Analysis and Modelling 

 

Arrhythmia is a varying rhythm in one’s 

heartbeat. It happens when signals from the 

brain to the heart are not able to regulate its 

beat normally. As a result, the heart will beat 

too quickly (tachycardia) or slowly 

(bradycardia). 

This section continues our look at ECG 

classification with deep learning, using the 

ECG heartbeat categorization dataset on 

Kaggle. In this article I want to discuss how 

to tackle multiclass classification: The 

dataset, which was compiled and pre-

processed from PhysioNet’s MIT-BIH 

Arrhythmia Database, contains five different 

types of beat categories. 

 

PhysioNet's MIT-BIH Arrhythmia Data 

The ECG heartbeat categorization dataset on Kaggle is composed of two collections 

of heartbeat signals taken from two famous datasets in heartbeat classification, the 

MIT-BIH Arrhythmia dataset and the PTB diagnostic ECG database. In the first section 

about ECG classification with deep learning, I trained the model on the PTB dataset, 

which has 2 categories of heartbeat signals. In this section, I will be training the model 

on the MIT-BIH Arrhythmia dataset, which contains 5 different heartbeat signal 

categories. 

Differentiation between kinds of arrhythmia. 

https://www.linkedin.com/in/ali-asghar-marvi-81455413b/
https://hub.knime.com/knime/spaces/Digital%20Healthcare/ECG%20Arrythmia%20Detection/ecg_cnn_mit~bWv0UtH6sTLAgcnn/current-state
https://en.wikipedia.org/wiki/Tachycardia
https://en.wikipedia.org/wiki/Bradycardia
https://physionet.org/content/mitdb/1.0.0/
https://physionet.org/content/mitdb/1.0.0/
https://www.kaggle.com/datasets/shayanfazeli/heartbeat
https://www.knime.com/blog/how-to-classify-ecg-signals-deep-learning
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In the Kaggle heartbeat dataset are the 

“mitbih_train.csv” and “mitbih_test.csv.” 

among the four files. As the names suggest, 

there is one file for model training purposes 

and another for testing purposes. There are 

188 columns in each file, just like for the 

PTB dataset. The target column has five 

class attributes: 0, 1, 2, 3, and 4. These are 

their definitions: 

• 0 - “N” for normal heartbeats 

• 1 - “S” for supra-ventricular premature 

• 2 - “V” for ventricular escape 

• 3 - “F” for fusion of ventricular and 

normal 

• 4 - “Q” for unclassified heartbeats 

Details for each of the classes can be found in the following figure, with the 

descriptions from the associated research paper by the authors. 

The training set has 87,554 rows, while the test set has 21,892 rows. The train set is 

highly imbalanced, with normal heartbeats labeled “0.0” (83% as shown in following 

figure). Next, I’ll discuss my data preparation approach to train an unbiased model. 

Detailed description of all class variables in the 

MIT-BIH arrhythmia dataset. 

Class distribution in training set. Imbalance is evident here. 

https://www.kaggle.com/shayanfazeli/heartbeat
https://arxiv.org/pdf/1805.00794.pdf
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Treating class imbalance for multiple classes 

For an unbiased model, class variables were shuffled and converted to string. I 

visualized the distribution of rows in the training set (the blue annotation block in figure 

below). Class variables are one-hot encoded and split such that the bottom port 

outputs all rows corresponding to “normal” class and rest in the top port. Using the 

Bootstrap Sampling node, the “normal” class is down-sampled to return 25% of total 

normal heartbeats in the dataset. The down-sampled table is concatenated with the 

rest of the rows belonging to other classes. The resulting table is manipulated using 

the SMOTE node by oversampling minority classes. 

Using SMOTE on a large dataset with multiple class variables is a time-consuming 

process. To make it relatively faster, down-sampling of the majority class is carried out 

before oversampling. The final output now has equal proportions of rows. CSV Writer 

is used to write the updated table in the data area of the workflow to avoid repeating 

the process and save time. 

Model Training 

Now that my data is resampled, I will proceed with the data modeling. Training data is 

partitioned with 80/20 split. Since test data is already provided, 20% of partitioned data 

was used for validation on each epoch by Keras Network Learner node. 

The neural network used is the same as in Part 1. However, since it's a multiclass 

problem, the loss function used here is “Categorical cross entropy”, and it’s optimized 

Downsampling the majority class and using SMOTE to oversample the minority classes. 
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using Adam in the Keras Network 

Learner node. The rest of the 

optimizer settings can be seen in 

the following figure. Training the 

model took around 5 minutes and 

37 seconds, with a validation 

accuracy of approximately 97%. 

Model Scoring 

Similarly to the workflow from the 

previous chapter, a Keras Network 

Executor node is used to make 

predictions on the test set 

provided by the authors. The Many 

to One node is used to extract 

predictions with maximum 

probability, while model 

performance is measured using 

the Scorer node. As seen in the 

figure below, the model makes 

predictions with 94.1% accuracy, 

with 20,617 rows correctly 

identified and 1,275 wrongly 

classified.   Configuration window of Keras Network Learner node. 

Confusion Matrix of Model performance. 
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Conclusion 

In this second part of ECG classification, I have discussed an arrhythmia dataset, which 

is available on Kaggle. The dataset was highly imbalanced, with the majority class 

being “Normal Heartbeat.” The imbalance was adjusted using Bootstrap Sampling 

(downsampling) of the majority class and oversampling of the minority class using the 

SMOTE technique. 

Similarly to before, data was trained using 1-Dimensional Convolutional Neural 

Network architecture, including Batch Normalization and Max Pooling. The model 

performed with a higher accuracy on the test set. The complete workflow can be found 

on the KNIME Hub under the Digital Health public space. 

 

The workflow group comprising the ECG arrhythmia classification on the KNIME Hub 

is ECG PTB and MIT-BIH Data Analysis & Modeling,” under the name “ecg_cnn_mit.” 

The figure above shows the main workflow of the ECG classification using the 

arrhythmia dataset. 

 

Complete workflow of ECG arrhythmia classification in KNIME. 

https://kni.me/w/bWv0UtH6sTLAgcnn
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Leveraging Healthcare Literature 

This chapter highlights applications that require the extraction of information from 

biomedical literature, such as keyword search or categorization through ontologies. 

With KNIME Analytics Platform’s dedicated extension for text processing, users can 

apply natural language processing (NLP) techniques to pre-process text and extract 

meaningful information from unstructured data. These techniques and visual 

workflows enable users to easily blend data from structured sources (see Chapter 2) 

with information from text. 

This chapter includes the articles: 

• Tagging Disease Names in Biomedical Literature, p. 73 

– Jeany Prinz, KNIME 

• Improve Literature Search & minimize Information Overload, p. 81 

– Dayanjan Wijesinghe, Virginia Commonwealth University 

– Martyna Pawletta, KNIME 
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Tagging Disease Names in Biomedical Literature 

 

Author: Jeany Prinz, KNIME 

Workflow on the KNIME Community Hub: Fun with Tags  

Introduction 

The rapid growth in the amount of biomedical literature becoming available makes it 

impossible for humans alone to extract and exhaust all of the useful information it 

contains. There is simply too much there. Despite our best efforts, many things would 

fall through the cracks, including valuable disease-related information.  

Hence, automated access to disease information is an important goal of text-mining 

efforts12. This enables, for example, the integration with other data types and the 

generation of new hypotheses by combining facts that have been extracted from 

several sources13. 

In this blog post, we will use KNIME Analytics Platform to create a model that learns 

disease names in a set of documents from the biomedical literature. The model has 

two inputs: an initial list of disease names and the documents. Our goal is to create a 

model that can tag disease names that are part of our input as well as novel disease 

names. Hence, one important aspect of this project is that our model should be able 

to autonomously detect disease names that were not part of the training. 

To do this, we will automatically extract abstracts from PubMed and use these 

documents (the corpus) to train our model starting with an initial list of disease names 

(the dictionary). We then evaluate the resulting model using documents that were not 

part of the training. Additionally, we test whether the model can extract new 

information by comparing the detected disease names to our initial dictionary. 

Subsequently, we interactively inspect the diseases that co-occur in the same 

documents and explore genetic information associated with these diseases. 

Our workflow has three main parts, which will be described in detail in the following: 

 

12 (2013, August 21). DNorm: disease name normalization with pairwise learning to rank. Retrieved July 12, 

2018, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810844/ 

13 (2006, February 1). Literature mining for the biologist: from information retrieval to ... - Nature. Retrieved 

July 12, 2018, from https://www.nature.com/articles/nrg1768 

 

https://www.linkedin.com/in/jeanette-jeany-p-482587180/
https://hub.knime.com/knime/spaces/Digital%20Healthcare/Fun%20with%20Tags~S-oDkzTYUYuOgaRf/current-state
https://www.knime.com/knime-software/knime-analytics-platform
https://www.ncbi.nlm.nih.gov/pubmed
https://www.knime.com/
https://www.knime.com/
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1. Dictionary and Corpus Creation 

2. Model Training and Evaluation 

3. Co-occurrence of Tagged Disease Names 

1. Dictionary and Corpus Creation 

Dictionary creation (Disease Names)  

For the initial input, we create a dictionary that contains disease names from Ensembl 

Biomart. For that, we downloaded phenotypes (diseases and traits) that are associated 

to genes or variants. These diseases and traits are assembled from different sources 

such as OMIM, Orphanet, and DDG2P. To create a dictionary that contains commonly 

used disease names, we filter the documents for disease names that are contained in 

at least three sources. The model we eventually train is case sensitive, thus, we add 

variations such as capitalizing the disease names, lowercase, and uppercase. The 

resulting disease names comprise our initial input dictionary. The dictionary creation 

is contained in the Disease Names metanode in the main workflow. 

Overview of the workflow to automatically extract disease related information from biomedical literature. 

First, the literature corpus as well as the dictionary of known disease names are gathered. Next, the model 

is trained and evaluated. Last, the results are investigated in a network graph. 

http://www.ensembl.org/biomart/martview/
http://www.ensembl.org/biomart/martview/
https://www.omim.org/
http://www.orpha.net/
https://decipher.sanger.ac.uk/
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Corpus creation 

One of the most important steps for creating a NLP (natural language processing) 

model is to gather a corpus of documents on which to train and test the model. For our 

purpose of automatically accessing disease information, we use abstracts from the 

database PubMed. The Document Grabber node enables us to automatically search 

the PubMed database according to specific queries. This query takes a disease name 

from our dictionary and searches for it in the PubMed data. We only keep the results 

from diseases with at least 20 hits in PubMed, and we collect a maximum of 100 

documents per disease. This Corpus is created in the Create Corpus from PubMed 

metanode. 

2. Model Training and Evaluation 

Model 

We can now use the dictionary and our corpus as input for the StanfordNLP NE Learner 

node. The StanfordNLP NE Learner node creates a Conditional Random Field (CRF) 

model based on documents and entities in the dictionary that occur in the documents. 

CRFs, a type of sequence model, which takes context into account, are often applied 

in text mining. If you are interested in the StanfordNLP toolkit, please visit 

http://nlp.stanford.edu/software/. 

The figure above depicts the workflow contained in the wrapped metanode Model 

Training and Evaluation. As the figure shows, we first split our collected documents 

into a training (10%) and a test set (90%) and train the model using the training data. 

We use the default parameters, with the exception that we increase maxLeft (the 

maximum context of class features used) to two and Max NGram Length (maximum 

Workflow contained in the wrapped metanode “Model Training and Evaluation”. We use the StandordNLP 

NE Learner and Tagger nodes to tag disease names in our corpus. The evaluation is done using the 

StanfordNLP NE Scorer and displayed using a Generic JavaScript View. 

https://www.ncbi.nlm.nih.gov/pubmed
http://nlp.stanford.edu/software/
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length for n-grams to be used) to ten. Additionally, we select the Word Shape function 

dan2bio. 

Next, we tag the documents in our test data with our trained 

model. Subsequently, we use the same test data to score our 

model. This is done with the StanfordNLP NE Scorer node, 

which calculates quality measures like precision, recall, and 

F1-measures and counts the amount of true positives, false 

negatives, and false positives. Note that it does not make 

sense to calculate true negatives, as this would be every 

word that is correctly not tagged as a disease. Internally, the 

StanfordNLP NE Scorer node tags the incoming test 

document set with a dictionary tagger using our initial 

disease dictionary. After that, the documents are tagged 

again via the input model, and then the node calculates the 

differences between the tags created by the dictionary 

tagger and the tags created by the input model. 

The Generic JavaScript View node helps us to generate a view summarizing the 

results. As can be seen in figure below, we achieve a Precision of 0.966, Recall of 0.917, 

F1 of 0.941. 

Comparison with input dictionary 

Now comes the interesting part. We are not only interested in how well our model 

recaptures disease names that we already know, but also if we are able to find new 

disease names. Therefore, we divide the diseases we have found in the test set 

depending on whether or not they were in our initial dictionary. We flag these either as 

“disease name contained in the input dictionary” or, alternatively, as “disease name 

NOT contained in the input dictionary.” 

We then create an interactive view that allows the user to investigate and filter the 

results. To select all data that were(or were not) contained in the input we use a 

GroupBy node to group according to the attribute we just created (i.e., if the data were 

part of the input dictionary or not). Here we use a small trick: it is important to “Enable 

highlighting” in the GroupBy node. If we show that in a composite view using a Table 

View (JavaScript) alongside another JavaScript view, it is now possible to make 

selections in one view which affect the other as well. If the user does not select 

anything, we will use all diseases by default. 

This part is included in the metanode named Compare with input dictionary. 

Confusion matrix containing 

the true positives, false 

positives, and false 

negatives. Precision, Recall 

and F1 are also shown. 

https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/process/WordShapeClassifier.html
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The disease names detected in the test set that are not contained in the input 

dictionary can be very similar to the ones that we used for the training. For example, 

PYCNODYSOSTOSIS is contained in our input dictionary and we detect the new name 

PYCNODYSOSTOSIS SYNDROME as well as the misspelling PYCNODYSOTOSIS, which 

we flag as not part of the input dictionary. The similarity of the tags shows us that the 

tagged disease names that are not part of the input dictionary actually do make sense. 

These alternate tags can be valuable, for example, in normalization efforts where we 

need to determine synonyms and/or spelling variants of disease names. 

To learn more about the newly detected disease names where the relationship to our 

input is less clear, we investigate whether or not tagged disease names co-occur in the 

same documents. This enables us to, for example, infer information from known 

diseases to the ones that were not in the input dictionary. 

 Interactive view of the results. The user can select one or more diseases or even all diseases that were 

(not) part of the input in the lower table view. This affects the first table and shows the corresponding 

diseases appearing in the test set. This is the output of the metanode “Compare with input dictionary”. 
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3. Co-occurence of Tagged Diesease Names 

In this last part, we utilize the Term Co-Occurrence Counter node to count the number 

of co-occurrences for the list of tagged diseases within the documents. We add the 

information to the resulting disease pairs pertaining to whether or not each term was 

part of the input dictionary. 

Co-occurrence network 

To facilitate the investigation of the results, we created a network graph with diseases 

as nodes, which were connected if they co-occurred in the same document. We colored 

the nodes according to their flag specifying whether or not they were contained in the 

input dictionary. We then created a view containing the network as well as a table with 

the disease names and the annotation stating whether it was part of the input 

dictionary. The creation of the network graph, node assignment, coloring, and edge 

definition is all computed in the metanode named Co-oc Network. The view is shown 

in the next figure. 

The user can now select nodes or rows of interest for further inspection either in the 

network or in the table. The subgraph surrounding the selected nodes/rows will be 

extracted and displayed in the next metanode. 

 

Network view of co-occurring disease names. Each node is a disease names. Nodes are connected if the 

disease name co-occur at least once in a document. The node color refers to the presence (blue) or 

absence (yellow) of the disease name in the original dictionary. 
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Subgraph 

The SubGraph Extractor node enables us to focus on a specific subset of diseases and 

their neighbors in the co-occurrence network. For that, the user needs to select a 

disease of interest. If nothing is selected, we display a message stating that one did 

not select a disease to inspect in subgraph. We utilize the Try and Catch Errors nodes 

to check if the selection is empty. 

Again, we show the network (Network Viewer node) in an interactive view along with a 

table (Table View node) containing the disease names. Furthermore, we display 

additional information about genetic associations of the disease in the same table. We 

do this by joining the edge table of our network with genetic information about the 

diseases that we collected from Ensembl Biomart. This allows us to derive hypotheses 

about the genetic basis of the diseases that were not in our input dictionary. 

For example, we select OHDO SYNDROME, which was not part of our input dictionary. 

In the resulting view, we see that this disease co-occurs with GENITOPATELLAR 

SYNDROME. Using the Ensembl information, we know that GENITOPATELLAR 

SYNDROME is associated with the gene, KAT6B. This could lead to the working 

hypothesis that OHDO SYNDROME is also associated with KAT6B. Indeed, mutations 

in the KAT6B gene have been associated with the Say-Barber-Biesecker Variant of 

Ohdo Syndrome14. 

 

14 "Whole-exome-sequencing identifies mutations in histone ... - NCBI." 11 Nov. 

2011, https://www.ncbi.nlm.nih.gov/pubmed/22077973. Accessed 1 Aug. 2018. 

Workflow to extract subgraphs of interest in the network of co-occurring disease names. This workflow is 

contained in the last metanode, “SubGraph”. 

https://www.ncbi.nlm.nih.gov/pubmed/22077973.%20Accessed%201%20Aug.%202018
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Summary 

Today, we successfully trained a model to tag disease names in biomedical abstracts 

from PubMed. We started with a set of well-known disease names in a dictionary. We 

then interactively investigated these known diseases as well as diseases that were not 

in our original dictionary and checked their co-occurrence in the collected documents. 

From these co-occurrences, we created a co-occurrence network where we could 

easily zoom into connected subgraphs and their underlying genetic associations. 

In summary, we learned how to tag new and known disease names in KNIME Analytics 

Platform, and hopefully you had fun! 

 

Subgraph connecting GENITOPATELLAR SYNDROME, OHDO SYNDROME and NAIL-PATELLA SYNDROME. 

Blue nodes indicate that the disease was part of our input dictionary, whereas yellow nodes indicate that 

the disease was not included. 

https://www.ncbi.nlm.nih.gov/pubmed
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Improve Literature Search & minimize Information 

Overload 

 

Authors: Dayanjan Wijesinghe, Virginia Commonwealth University & Martyna Pawletta, KNIME 

Workflows on the KNIME Community Hub: Search for Ethnicity Related Adverse Events of a Drug & 

Tagging Genes in Disease Related Publications 

Examples of Tagging Scientific Publications using Synonyms, 

Dictionaries & Ontologies 

An ever increasing body of scientific literature is documenting significant advances in 

healthcare research and novel treatments. However, these valuable insights often get 

lost in the exponentially increasing volume of published studies. 

A single query often results in a huge number of publications, all of which needs to be 

carefully read through. This quickly becomes an overwhelming task. Narrowing the 

query parameters to bring down the resultant information to a manageable number 

runs the risk of the query being too specific and leading to a few or even no results. 

These narrow queries can also be a significant barrier to incidental findings that may 

be of relevance to the question under investigation. 

A simple approach allowing the querying of two overlapping but different sources such 

as PubMed or Semantic Scholar in parallel, and using highlighting to quickly identify 

the relevant information will not only save time, but go a long way towards minimizing 

information overload while keeping a query broad enough to allow incidental findings. 

In today’s blog we will demonstrate how such an outcome may be achieved using the 

open source KNIME Analytics Platform. 

We created two example workflows to automatically extract abstracts from 

publications. 

• Example #1 investigates Adverse Drug Events (ADE’s) in the context of the ethnic 

background of a patient: Download workflow: Search for Ethnicity Related 

Adverse Events of a Drug. 

• Example #2 investigates relationships of particular genes and diseases. 

Download workflow: Tagging Genes in Disease Related Publications 

With both workflows we use ontologies, dictionaries, or web services to get a list of 

terms or synonyms to help with the search. We also tag terms of relevance in abstracts 

https://www.linkedin.com/in/dayanjanwijesinghe/
https://www.linkedin.com/in/martyna-pawletta-29a75b3b/
https://hub.knime.com/knime/spaces/Digital%20Healthcare/Literature%20Search%20on%20Ethnicity%20related%20Adverse%20Events~IyAYN3sNcMOjsiA0/current-state
https://hub.knime.com/knime/spaces/Digital%20Healthcare/Tag%20Genes%20in%20Disease%20related%20Literature~o_KyU7daIHxzGSYn/current-state
https://pubmed.ncbi.nlm.nih.gov/
https://www.semanticscholar.org/about
https://hub.knime.com/-/spaces/-/latest/~IyAYN3sNcMOjsiA0/
https://hub.knime.com/-/spaces/-/latest/~IyAYN3sNcMOjsiA0/
https://hub.knime.com/-/spaces/-/latest/~o_KyU7daIHxzGSYn/
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and highlight them in a manner to make the relevant information much easier to find. 

Let's have a look at the two workflows. 

Example #1: Investigating Adverse Drug Events & Ethnicity 

Genetic polymorphisms in enzymes involved in ADME (absorbance, distribution, 

metabolism and excretion) have been demonstrated to affect drug response as well 

as ADE’s. Specific polymorphisms in these enzymes have been demonstrated to be 

differentially concentrated among different ethnic groups. This natural phenomenon 

leads to ethnicity dependent variations in drug responses and ADEs. 

Often, the balanced representation of different ethnic groups in clinical trials are 

difficult to achieve. Thus medications once approved are used to treat ethnic groups 

on which the medication are not tested. As such, a drug that is safe for the majority 

may have a differential response or ADE in a different ethnic group due to inherent 

variations in polymorphisms among ADME genes. 

Early identification of such rare adverse events will likely be detailed in clinical reports 

with one or a small number of patients. Thus such information is often lost in the 

vastness of published literature unless a routine ADE surveillance effort is 

implemented that specifically investigate ADE’s in the context of ethnic backgrounds. 

In the workflow we have created, we look into the example of Carbamazepine and the 

Stevens-Johnson Syndrome which is a serious skin disorder. Let’s check if there is 

literature available that would suggest a dependency on any kind of ethnic background 

of patients.  

 

This example workflow gets an adverse event and a drug from the user and gets tagged publications that 

mention a relationship to any kind of ethnicity. 

https://www.drugs.com/carbamazepine.html
https://en.wikipedia.org/wiki/Stevens%E2%80%93Johnson_syndrome
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Create Query for Web Services 

With this outline in mind we created a workflow that allows the user to search within 

two different literature sources for publications that relate to the search query using 

only one tool – the open source KNIME Analytics Platform. 

In the first step the user can add a name of a drug and an adverse event into an 

interactive view of a component. It's not only two simple text fields – we added more 

functionality in the backend that to improve the search. The adverse event field is made 

of an Autocomplete Widget node and, based on the Ontology of Adverse Events, 

proposes terms directly when the user is typing first characters. Nevertheless, if a term 

isn't available, it will use what is entered to create the query. 

Depending on the author of a publication, different names of a particular drug that is 

described is used. Sometimes the compound name or the marketed drug name could 

be entered. For example: some people would say Aspirin, others Acetylsalicylic Acid. 

To make sure we catch as many publications as possible, we collect synonyms for the 

entered drug using the ChEMBL Web Service. 

Finally, in order to improve the search, we added two different sources to look for 

publications. The first is PubMed that can be called using the Document Grabber node. 

In our research to see if other APIs are available, we stumbled upon Semantic Scholar 

which is an invention of the Allan Institute and contains a really easy to use web 

service. Please read through the license and the API documentation, before you start 

using it in the workflow. 

Remember the time when publications were printed and you used to sit with a text 

highlighter or marker to mark the important parts? This is done here automatically on 

the abstracts using the Dictionary Tagger and Tagged Document Viewer nodes. 

Interactive View of the Enter Search Criteria component that allows the user to specify the search criteria. 

https://docs.knime.com/2021-12/analytics_platform_components_guide/index.html
https://kni.me/n/WnzwWz3JZAAP6dCG
http://www.oae-ontology.org/
https://chembl.gitbook.io/chembl-interface-documentation/web-services/chembl-data-web-services
https://kni.me/n/XVmNe8jKroP2Ciiz
https://www.semanticscholar.org/about
https://allenai.org/terms
https://www.semanticscholar.org/product/api
https://kni.me/n/z6HElpxvFXzWPXru
https://kni.me/n/X9zqNksLeWzKDDxR
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Check the Results 

So let’s have a look at our example Carbamazepine & Stevens-Johnson Syndrome to 

see if there is literature available that shows a relationship between both terms and 

the ethnic background of patients. Indeed there is a lot of information already available 

(see figure above). 

Now it’s the time to go through those and check for the interesting ones. Once this is 

done, a list of relevant publications can be generated and downloaded using the 

interactive view of the last component in the workflow. 

Note. This workflow uploaded to KNIME Business Hub creates a web-based 

application that doesn’t expect any workflow building skills from the user.” 

This example workflow gets an adverse event and a drug from the user and gets tagged publications that 

mention a relationship to any kind of ethnicity 

https://www.knime.com/knime-business-hub
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Example #2: Investigating Relationships of Specific Diseases 

& Genes 

With this example we will show how easy it is to use dictionaries and ontologies and 

tag those terms on biomedical literature within KNIME Analytics Platform. It is in 

principle a similar example to the first one – we aim to do a literate search – but let’s 

focus here on the reading part a bit more. 

We start again with an input - this time a disease that needs to be entered or selected 

in the Autocomplete Widget node. The node gets a list of diseases from the disease 

ontology that can be downloaded from the OBO foundry. To read the .rdf format we 

can use the Triple File Reader node. 

The literature that will be downloaded with title and abstract will be in the next step 

tagged with genes to find out which genes are mentioned in publications with a certain 

disease. For this we connect with the UniPort SPARQL Endpoint using the SPARQL 

Endpoint node. With a dedicated query we get a list of genes and disease annotations 

from UniProt. 

Once the terms and literature is loaded we map the genes against the publications 

using the Dictionary Tagger node. With some more processing and data preparation 

we create a visualization within a component that allows us to interactively browse 

through the publication. 

To make it easier to browse through the genes we counted the tags and those with the 

highest frequency are visible first. With this the user can decide if the known and 

This example workflow combines different ontologies to extract information from PubMed and adds Tags 

in an interactive view at the end. 

https://kni.me/n/WnzwWz3JZAAP6dCG
https://kni.me/n/PuryPyVKTXEkSDnM
https://sparql.uniprot.org/
https://kni.me/n/XxpjzMBZyFrSdLkB
https://kni.me/n/XxpjzMBZyFrSdLkB
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already well researched, or the rare and maybe newly discovered genes are of interest 

for the disease under investigation. 

 

This example workflow combines different ontologies to extract information from PubMed and adds Tags 

in an interactive view at the end. 
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Successfully Addressing Information Overload in Research 

Literature 

In this section we discussed different approaches and options to undertake biomedical 

literature surveys using dictionaries and ontologies, tagging the abstracts according 

to those terms as well as displaying the results through an interactive visualization. 

With this, we created a tool that can help to investigate for example hypotheses around 

adverse drug events with respect to ethnic backgrounds of a patient without going into 

different literature sources. Is this all that can be done using such approaches? Not at 

all! There are a lot more questions that could be tackled using such tools and extending 

the existing workflows with other sources, terms and ideas. This can ultimately lead to 

customizable and easily generalizable tools that can be applied to literature reviews in 

any domain. 
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