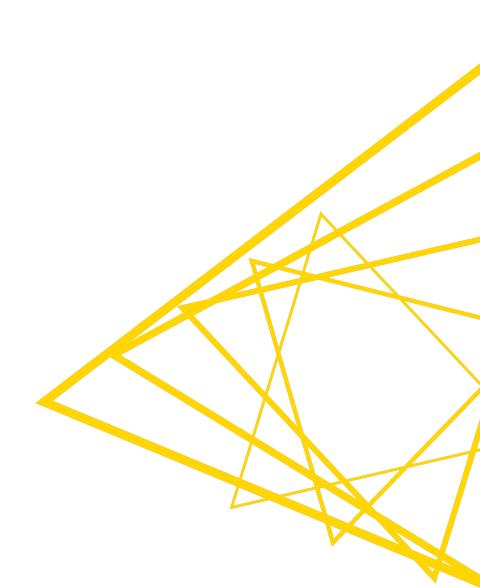


# [L4-ML] Introduction to Machine Learning Algorithms

KNIME AG



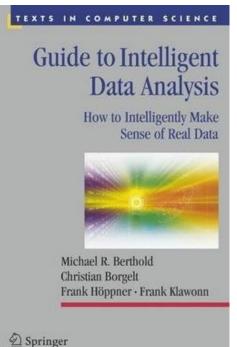
### **Structure of the Course**

| Session   | Торіс                                                     |
|-----------|-----------------------------------------------------------|
| Session 1 | Introduction & Decision Tree Algorithm                    |
| Session 2 | Regression Models, Ensemble Models, & Logistic Regression |
| Session 3 | Neural Networks & Recommendation Engines                  |
| Session 4 | Clustering & Data Preparation                             |
| Session 5 | Last Exercise and Q&A                                     |

- Structure of each session
- Discussion of past exercises (10 minutes)
- Course (60 minutes)
- Introduction of next exercises (5 minutes)

### **Material**

- Michael Berthold, Christian Borgelt, Frank Höppner, Frank Klawonn: Guide to Intelligent Data Analysis Springer, 2010.
- Tom Mitchell: Machine Learning McGraw Hill, 1997.
- David Hand, Heikki Mannila, Padhraic Smyth: Principles of Data Mining MIT Press, 2001.
- Michael Berthold, David Hand (eds): Intelligent Data Analysis, An Introduction (2nd Edition) Springer Verlag, 2003.





[Wikipedia quoting Dhar 13, Leek 13]

**Data science** is a multi-disciplinary field that uses scientific methods, processes, algorithms and systems to **extract knowledge and insights** from structured and unstructured data.

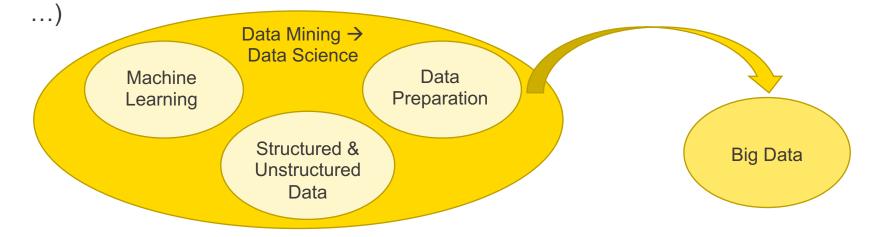
[Fayyad, Piatetsky-Shapiro & Smyth 96]

*Knowledge discovery in databases (KDD)* is the process of (semi-)automatic **extraction of knowledge** from databases which is *valid*, *previously unknown*, and *potentially useful*.



## **Some Clarity about Words**

- *(semi)-automatic*: no manual analysis, though some user interaction required
- valid: in the statistical sense
- previously unknown: not explicit, no "common sense knowledge"
- potentially useful: for a given application
- structured data: numbers
- unstructured data: everything else (images, texts, networks, chem. compounds,





## **Use Case Collection**

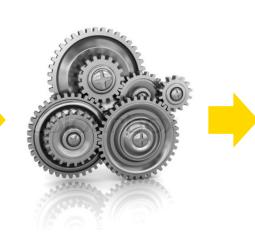


### **Churn Prediction**



CRM System Data about your customer

- Demographics
- Behavior
- Revenues



Model



- Churn Prediction
- Upselling Likelihood
- Product Propensity /NBO
- Campaign Management
- Customer Segmentation

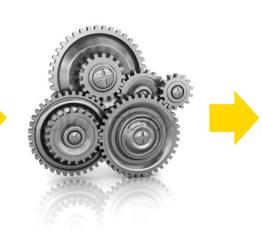
• ...

### **Customer Segmentation**



CRM System Data about your customer

- Demographics
- Behavior
- Revenues



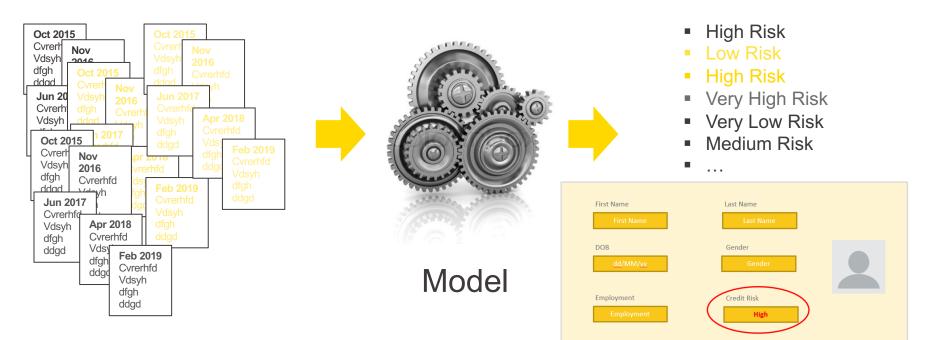
Model



- Churn Prediction
- Upselling Likelihood
- Product Propensity /NBO
- Campaign Management
- Customer Segmentation

• ...

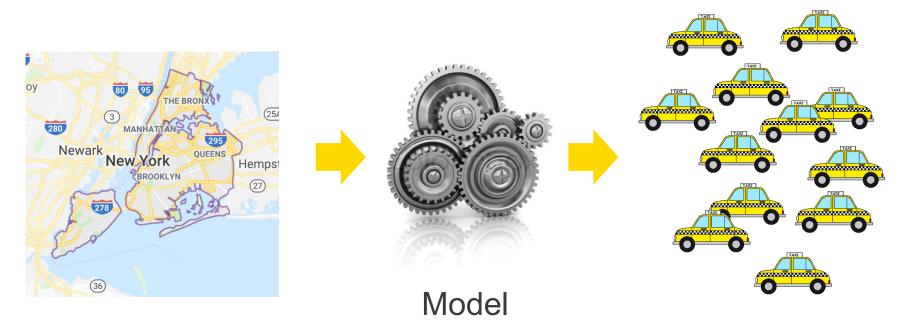
#### **Customer History**



**Risk Prognosis** 

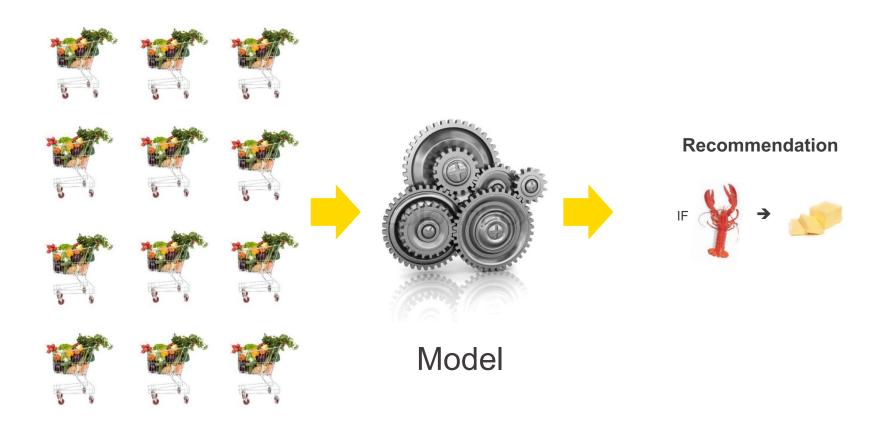
### **Demand Prediction**

How many taxis do I need in NYC on Wednesday at noon?





### **Recommendation Engines / Market Basket Analysis**





### **Fraud Detection**



#### Transactions

- Trx 1
- Trx 2
- Trx 3
- Trx 4
- Trx 5
- Trx 6
- ...



Model



### **Sentiment Analysis**



#### Samsung

Samsung Galaxy S7 Edge G935A 32GB Unlocked - Gold Platinum ★★★☆☆ × 125 customer reviews | 606 answered questions

#### ★★★★★ Beautiful phone from a wonderful seller!

By on May 29, 2017 Color: Gold | Verified Purchase This practically new beautiful phone well exceeded my expectations!



#### 会会会会 One Star By on August 3, 2016 Color: Black Onyx **Verified Purchase** Very bad experience





### **Anomaly Detection**

Predicting mechanical failure as late as possible but before it happens



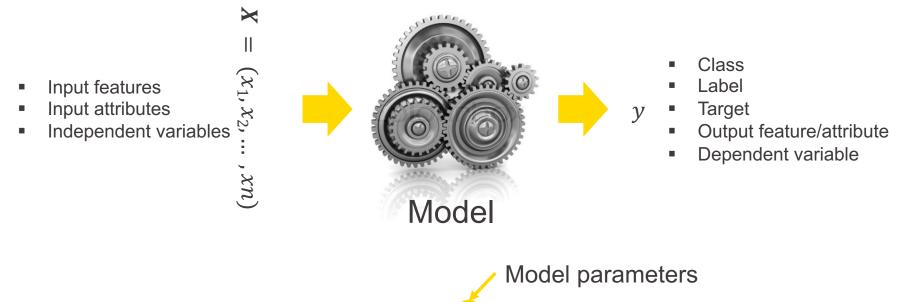
Only some Spectral Time Series shows the break down

via REST



# **Basic Concepts in Data Science**

# What is a Learning Algorithm?



$$y = f(\boldsymbol{\beta}, \boldsymbol{X}) \text{ with } \boldsymbol{\beta} = [\beta_1, \beta_2, \dots, \beta_m]$$

A learning algorithm adjusts (learns) the model parameters  $\beta$  throughout a number of iterations to maximize/minimize a likelihood/error function on y.



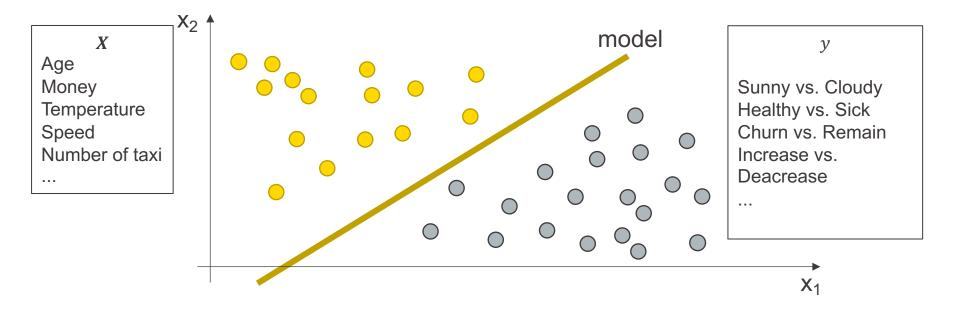
### **Algorithm Training / Learning**

- The model *learns / is trained* during the *learning / training* phase to produce the right answer y (a.k.a., label)
- That is why machine learning ③
- Many different algorithms for three ways of learning:
  - Supervised
  - Unsupervised
  - Semi-supervised



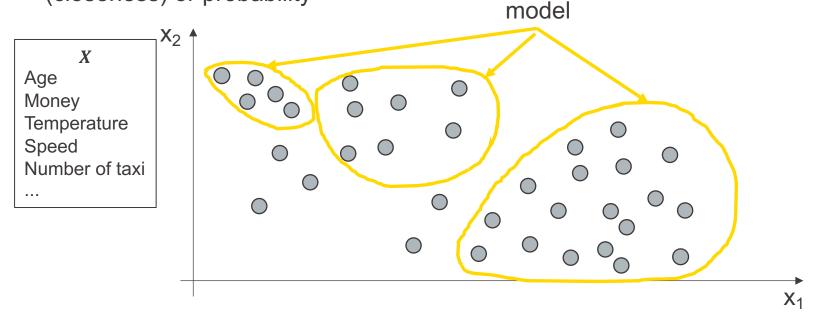
### **Supervised Learning**

- $X = (x_1, x_2)$  and  $y = \{yellow, gray\}$
- A training set with many examples of (*X*, *y*)
- The model learns on the examples of the training set to produce the right value of y for an input vector X



# **Unsupervised Learning**

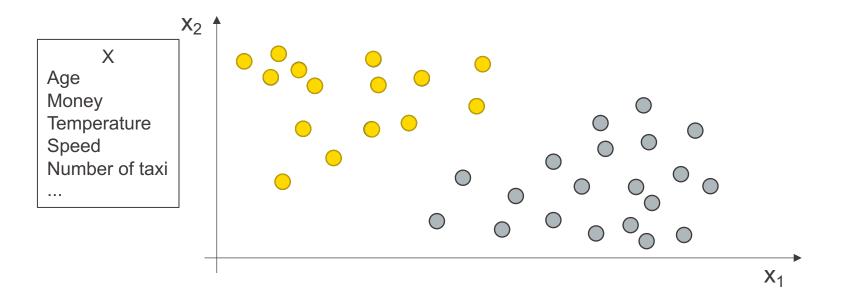
- $X = (x_1, x_2)$  and  $y = \{yellow, gray\}$
- A training set with many examples of (X, y)
- The model learns to group the examples X of the training set based on similarity (closeness) or probability



### **Semi-Supervised Learning**

•  $X = (x_1, x_2)$  and  $y = \{yellow, gray\}$ 

- A training set with many examples of (X, y) and some samples (X, y)
- The model labels the data in the training set using a modified unsupervised learning procedure



### **Supervised Learning: Classification vs. Numerical Predictions**

- $X = (x_1, x_2)$  and  $y = \{label 1, \dots, label n\}$  or  $y \in \mathbb{R}$
- A training set with many examples of (*X*, *y*)
- The model learns on the examples of the training set to produce the right value of y for an input vector X

### Classification

y = {yellow, gray}

- *y* = {churn, no churn}
- y = {increase, unchanged, decrease}
- y = {blonde, gray, brown, red, black}
- $y = \{job \ 1, job \ 2, \dots, job \ n\}$

### **Numerical Predictions**

- *y* = temperature
- *y* = number of visitors
- y = number of kW
- y = price
- y = number of hours



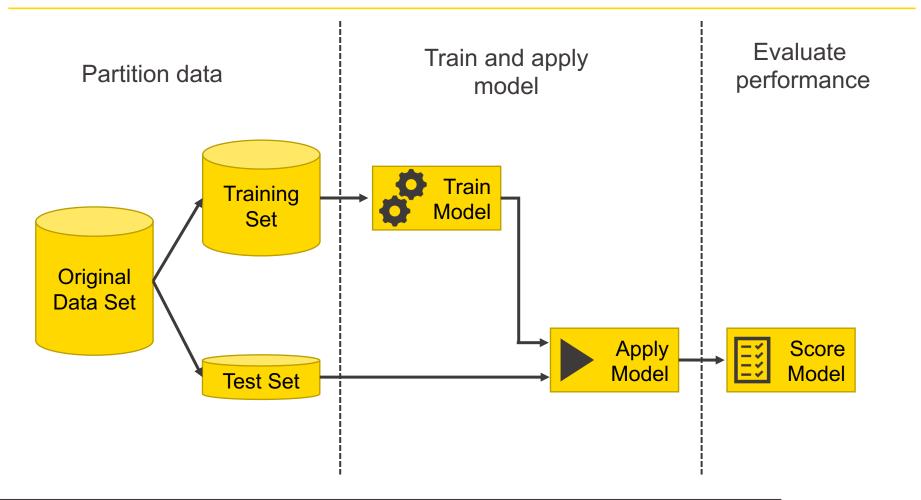
## **Training vs. Testing: Partitioning**

- *Training phase*: the algorithm trains a model using the data in the training set
- Testing phase: a metric measures how well the model is performing on data in a new dataset (the test set)



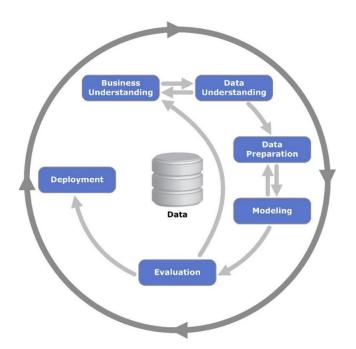


### **Data Science: Process Overview**





### **The CRISP-DM Cycle**

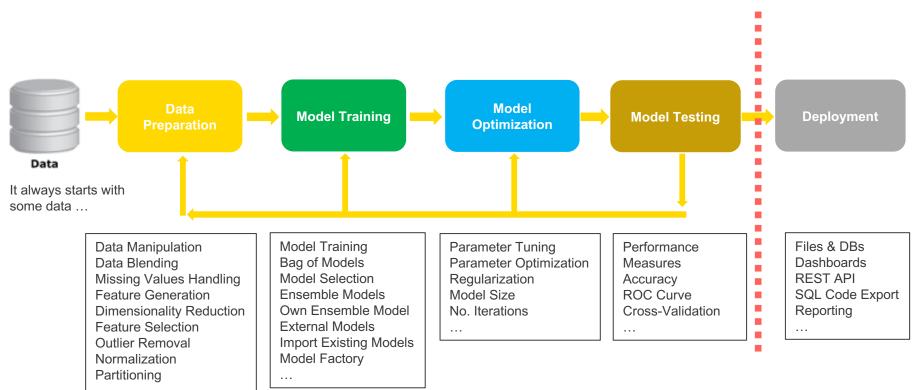


| ← → ①                                                                                                                   | wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| WIKIPEDIA<br>The Free Encyclopedia                                                                                      | Article Talk Cross Industry Standard Process for Data Mining From Wikipedia, the free encyclopedia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Main page<br>Contents<br>Featured content<br>Current events<br>Random article<br>Donate to Wikipedia<br>Wikipedia store | Cross Industry Standard Process for Data Mining, commonly known by its acronym CRISP-DM, <sup>[1]</sup> is a data website (KDNuggets) in 2002, 2004, 2007 and 2014 show that it was the leading methodology used by indust many people reported using CRISP-DM. A review and critique of data mining process models in 2009 called the models include Kurgan and Musilek's 2006 review, <sup>[7]</sup> and Azevedo and Santos' 2008 comparison of CRISP-DM (SIG) responsible along with the website has long disappeared (see History of CRISP-DM).<br>In 2015, IBM Corporation released a new methodology called <i>Analytics Solutions Unified Method for Data Min</i> |  |  |  |  |
| Interaction<br>Help<br>About Wikipedia<br>Community portal<br>Recent changes<br>Contact page                            | Contents [hide]<br>1 Major phases<br>2 History<br>3 References<br>4 External Links                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Tools<br>What links here<br>Related changes                                                                             | Major phases [edit]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |

https://en.wikipedia.org/wiki/Cross\_Industry\_Standard\_ Process for Data Mining



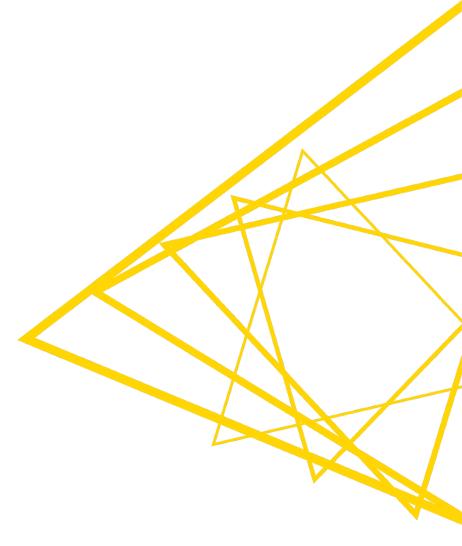
### **A Classic Data Science Project**



. . .

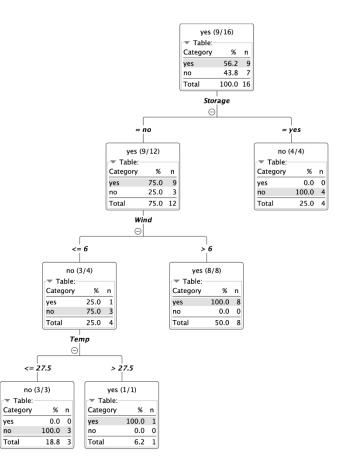


## **Decision Tree Algorithm**



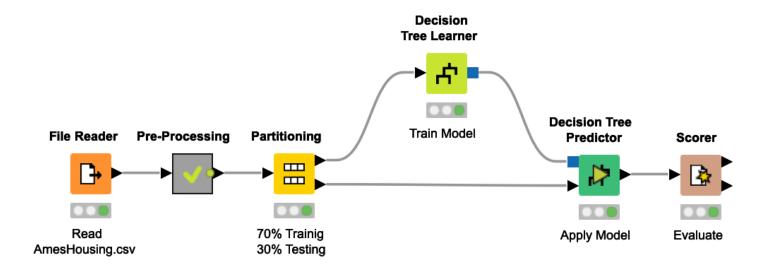
### **Goal: A Decision Tree**

| Outlook  | Wind | Temp | Storage | Sailing |
|----------|------|------|---------|---------|
| sunny    | 3    | 30   | no      | yes     |
| sunny    | 3    | 25   | no      | no      |
| rain     | 12   | 15   | no      | yes     |
| overcast | 15   | 2    | yes     | no      |
| rain     | 16   | 25   | no      | yes     |
| sunny    | 14   | 18   | no      | yes     |
| rain     | 3    | 5    | yes     | no      |
| sunny    | 9    | 20   | no      | yes     |
| overcast | 14   | 5    | yes     | no      |
| sunny    | 1    | 7    | yes     | no      |
| rain     | 4    | 25   | no      | no      |
| rain     | 14   | 24   | no      | yes     |
| sunny    | 11   | 20   | no      | yes     |
| sunny    | 2    | 18   | no      | no      |
| overcast | 8    | 22   | no      | yes     |
| overcast | 13   | 24   | no      | yes     |





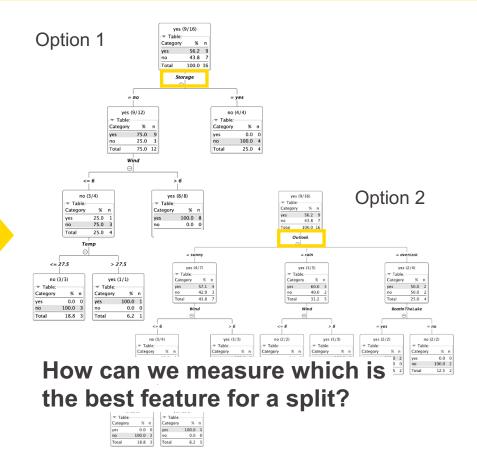
### How can we Train a Decision Tree with KNIME Analytics Platform





### **Goal: A Decision Tree**

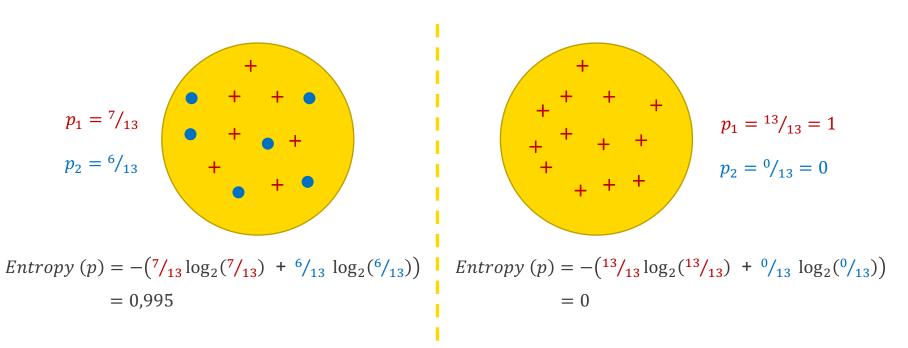
| Outlook  | Wind | Temp | Storage | Sailing |
|----------|------|------|---------|---------|
| sunny    | 3    | 30   | yes     | yes     |
| sunny    | 3    | 25   | yes     | no      |
| rain     | 12   | 15   | yes     | yes     |
| overcast | 15   | 2    | no      | no      |
| rain     | 16   | 25   | yes     | yes     |
| sunny    | 14   | 18   | yes     | yes     |
| rain     | 3    | 5    | no      | no      |
| sunny    | 9    | 20   | yes     | yes     |
| overcast | 14   | 5    | no      | no      |
| sunny    | 1    | 7    | no      | no      |
| rain     | 4    | 25   | yes     | no      |
| rain     | 14   | 24   | yes     | yes     |
| sunny    | 11   | 20   | yes     | yes     |
| sunny    | 2    | 18   | yes     | no      |
| overcast | 8    | 22   | yes     | yes     |
| overcast | 13   | 24   | yes     | yes     |



### **Possible Split Criterion: Gain Ratio**

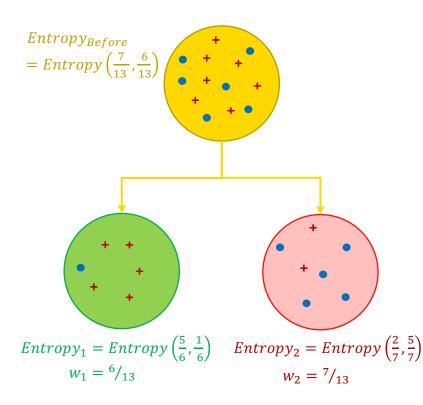
Based on entropy = measure for information / uncertainty

Entropy  $(p) = -\sum_{i=0}^{n} p_i \log_2 p_i$  for  $p \in \mathbb{Q}^n$ 





### **Possible Split Criterion: Gain Ratio**



### **Split criterion:**

 $Gain = Entropy_{Before} - Entropy_{After}$  $Gain = Entropy_{Before} - \frac{6}{13} Entropy_1 - \frac{7}{13} Entropy_2$ 

**Next splitting feature:** Feature with highest *Gain* 

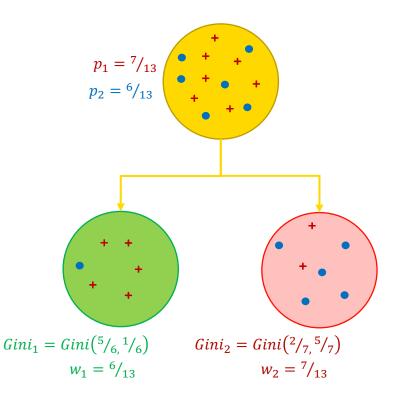
**Problem:** Favors features with many different values

Solution: Gain Ratio

 $GainRatio = \frac{Gain}{SplitInfo} = \frac{Entropy_{Before} - \sum_{i=1}^{k} w_i Entropy_i}{\sum_{i=1}^{k} w_i \log_2 w_i}$ 



### **Possible Split Criterion: Gini Index**



### Gini index is based on Gini impurity:

$$Gini(p) = 1 - \sum_{i=1}^{n} p_i^2 \quad \text{for } p \in \mathbb{Q}^n$$
$$Gini(p) = 1 - \frac{7^2}{13^2} - \frac{6^2}{13^2}$$

### Split criterion:

$$Gini_{Index} = \sum_{i=1}^{n} w_i Gini_i$$

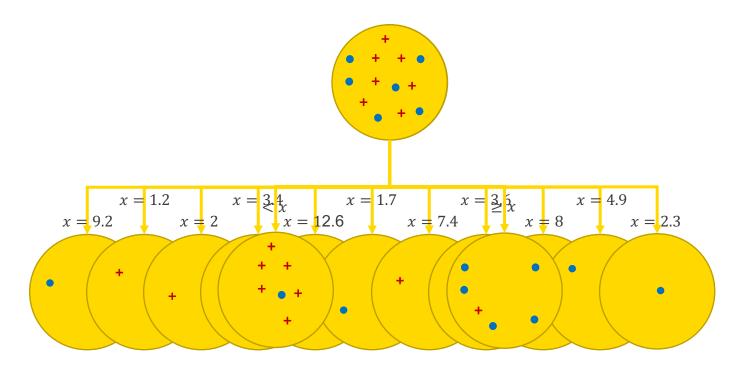
$$Gini_{Index} = \frac{6}{13}Gini_1 + \frac{7}{13}Gini_2$$

### **Next splitting feature:** Feature with lowest *Gini*<sub>Index</sub>



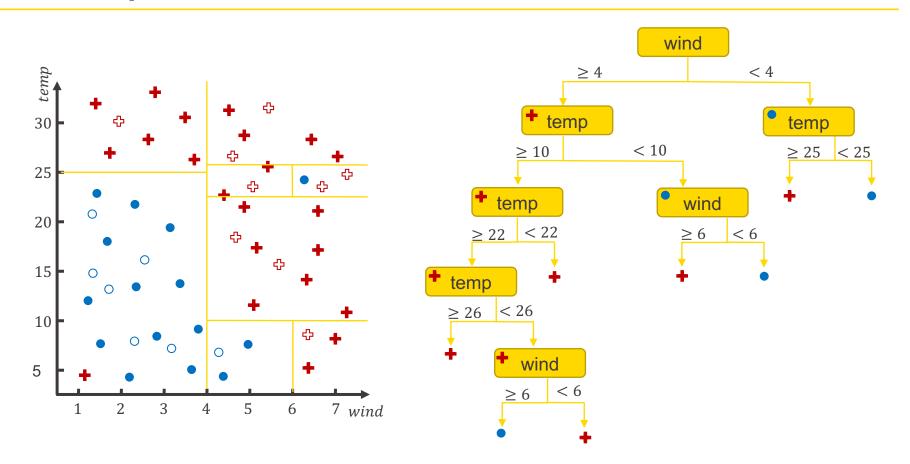
### What happens for numerical Input Features?

Subset for each value? – NO **Solution:** Binary splits

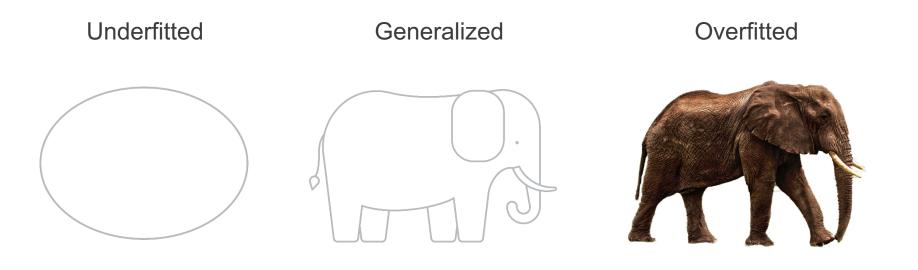




### The Deeper the Better?!



### **Overfitting vs Underfitting**



Model overlooks underlying patterns in the training set

Model captures correlations in the training set

Model memorizes the training set rather then finding underlying patterns



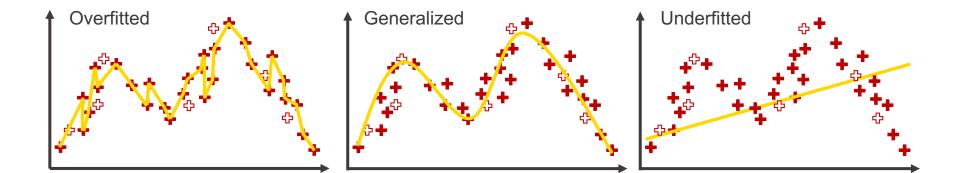
### **Overfitting vs Underfitting**

#### **Overfitting**

- Model that fits the training data too well, including details and noise
- Negative impact on the model's ability to generalize

#### **Underfitting**

A model that can neither model the training data nor generalize to new data







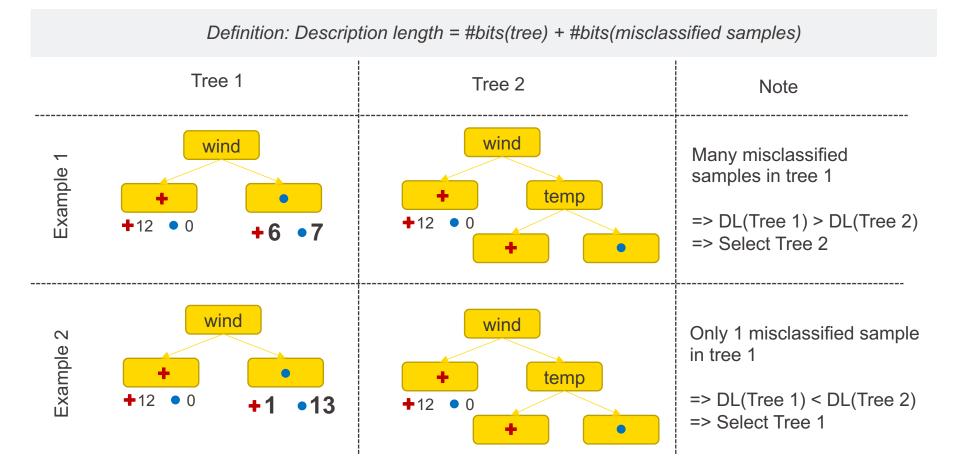
### **Controlling the Tree Depth**

Goal: Tree that generalizes to new data and doesn't overfit

| Pruning                                                                                        | Early stopping                                  |
|------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Idea: Cut branches that seem as result from overfitting                                        | Idea: Define a minimum size for the tree leaves |
| <ul><li>Techniques:</li><li>Reduced Error Pruning</li><li>Minimum description length</li></ul> |                                                 |

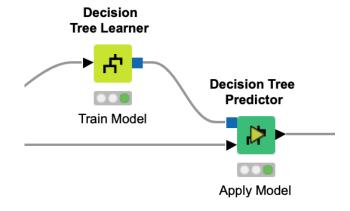


# **Pruning - Minimum Description Length Pruning (MDL)**





### **Applying the Model – What are the Outputs?**

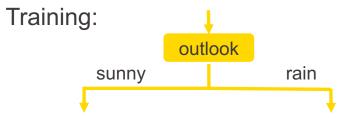


| e Hilite | Navigation        | View     |                    |                 |                     |
|----------|-------------------|----------|--------------------|-----------------|---------------------|
| Та       | ble "default" – R | ows: 879 | Spec – Columns: 82 | Properties      | low Variables       |
| Row ID   | SalePr            | . S rank | D P (rank=Low)     | D P (rank=High) | S Prediction (rank) |
| 10       | 189000            | Low      | 0.889              | 0.111           | Low                 |
| 11       | 175900            | Low      | 1                  | 0               | Low                 |
| 13       | 180400            | Low      | 1                  | 0               | Low                 |
| 15       | 212000            | Low      | 0.946              | 0.054           | Low                 |
| 21       | 190000            | High     | 0                  | 1               | High                |
| 22       | 170000            | High     | 0.2                | 0.8             | High                |
| 27       | 126000            | Low      | 1                  | 0               | Low                 |
| 28       | 115000            | Low      | 1                  | 0               | Low                 |
| 33       | 127500            | Low      | 1                  | 0               | Low                 |



# **No True Child Strategy**

|          | Outlook  | Wind | Temp | Storage | Sailing |
|----------|----------|------|------|---------|---------|
|          | sunny    | 3    | 30   | yes     | yes     |
|          | sunny    | 3    | 25   | yes     | no      |
| ng       | rain     | 12   | 15   | yes     | yes     |
| Training | rain     | 16   | 25   | yes     | yes     |
| ื้อ      | sunny    | 14   | 18   | yes     | yes     |
|          | rain     | 3    | 5    | no      | no      |
|          | sunny    | 9    | 20   | yes     | yes     |
|          | sunny    | 1    | 7    | no      | no      |
|          | rain     | 4    | 25   | yes     | no      |
| D        | rain     | 14   | 24   | yes     | yes     |
| Testing  | sunny    | 11   | 20   | yes     | yes     |
| eSt      | sunny    | 2    | 18   | yes     | no      |
| Ĕ        | overcast | 8    | 22   | yes     | yes     |
|          | overcast | 13   | 24   | yes     | yes     |

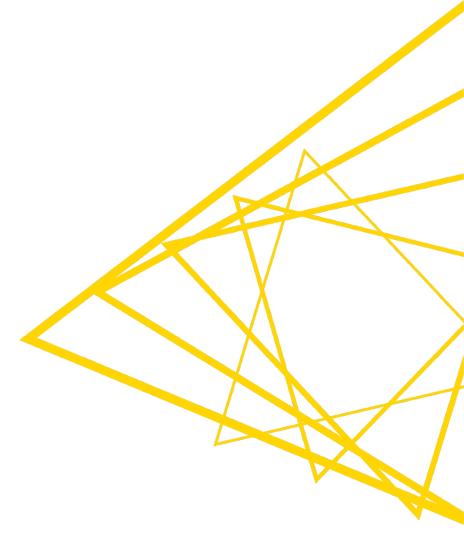


#### What happens with outlook = overcast?

| Options         | PMMLSettings           | Flow Variables |  |  |
|-----------------|------------------------|----------------|--|--|
| No true child s | No true child strategy |                |  |  |
|                 | returnLastPred         |                |  |  |
|                 | returnNullPred         | ulction        |  |  |
|                 |                        |                |  |  |
| Missing Value   | Strategy               |                |  |  |
| IastPrediction  |                        |                |  |  |
|                 | U lastPredict          | 1011           |  |  |
|                 | o lastPredict          |                |  |  |
|                 |                        |                |  |  |
|                 |                        |                |  |  |
|                 |                        |                |  |  |

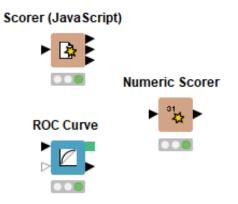


# **Evaluation of Classification Models**



## **Evaluation Metrics**

- Why evaluation metrics?
  - Quantify the power of a model
  - Compare model configurations and/or models, and select the best performing one
  - Obtain the expected performance of the model for new data
- Different model evaluation techniques are available for
  - Classification/regression models
  - Imbalanced/balanced target class distributions



Definition:

Overall accuracy =  $\frac{\# Correct \ classifications \ (test \ set)}{\# \ All \ events \ (test \ set)}$ 

- The proportion of correct classifications
- Downsides:
  - Only considers the performance in general and not for the different classes
  - Therefore, not informative when the class distribution is unbalanced



# **Confusion Matrix for Sailing Example**

| Sailing<br>yes / no | Predicted class: yes | Predicted class: no |
|---------------------|----------------------|---------------------|
| True class:<br>yes  | 22                   | 3                   |
| True class:<br>no   | 12                   | 328                 |

| Sailing<br>yes / no | Predicted class: yes | Predicted class: no |
|---------------------|----------------------|---------------------|
| True class:<br>yes  | 0                    | 25                  |
| True class:<br>no   | 0                    | 340                 |

Accuracy 
$$=\frac{350}{365}=0,96$$

Accuracy  $=\frac{340}{365}=0,93$ 

- Rows true class values
- Columns predicted class values
- Numbers on main diagonal correctly classified samples
- Numbers off the main diagonal misclassified samples



# **Confusion matrix**

Arbitrarily define one class value as POSITIVE and the remaining class as NEGATIVE

|                        | Predicted class positive | Predicted class<br>negative | TRUE<br>predie |
|------------------------|--------------------------|-----------------------------|----------------|
| True class<br>positive | TRUE<br>POSITIVE         | FALSE<br>NEGATIVE           | TRUE<br>predi  |
| True class<br>negative | FALSE<br>POSITIVE        | TRUE<br>NEGATIVE            | FALS           |
|                        |                          |                             | FALS           |

TRUE POSITIVE (**TP**): Actual and predicted class is positive

TRUE NEGATIVE (**TN**): Actual and predicted class is negative

FALSE NEGATIVE (**FN**): Actual class is positive and predicted negative

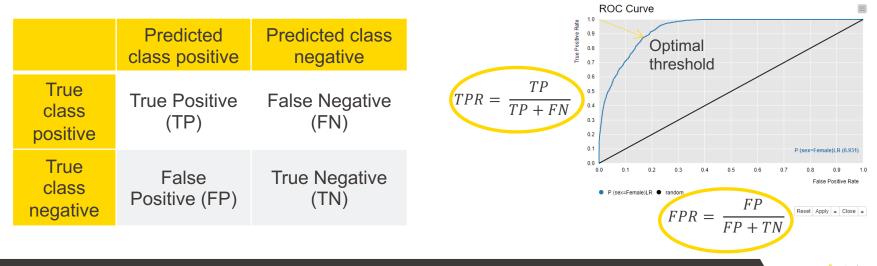
FALSE POSITIVE (**FP**): Actual class is negative and predicted positive

Use these four statistics to calculate other evaluation metrics, such as overall accuracy, true positive rate, and false positive rate



# **ROC Curve**

- The ROC Curve shows the false positive rate and true positive rate for different threshold values
  - False positive rate (FPR)
    - negative events incorrectly classified as positive
  - True positive rate (TPR)
    - positive events correctly classified as positive



**KNIME** 

### **Cohen's Kappa (κ) vs. Overall accuracy**

|                                 | Positive                              | Negative | •        |                                                      |                        | Positive                                | Negative                              |
|---------------------------------|---------------------------------------|----------|----------|------------------------------------------------------|------------------------|-----------------------------------------|---------------------------------------|
| Positive                        | 14                                    | 6        |          | Switch TP<br>and FP                                  | Positive               | 6                                       | 14                                    |
| Negative                        | 5                                     | 75       |          |                                                      | Negative               | 5                                       | 75                                    |
| $p_{e1}$ :                      | $=\frac{19}{100}\times\frac{20}{100}$ |          |          |                                                      |                        | $p_{e1} = \frac{1}{10}$                 | $\frac{1}{100} \times \frac{20}{100}$ |
| $p_{e2}$ :                      | $=\frac{81}{100}\times\frac{80}{100}$ |          |          | Overall                                              |                        | $p_{e2} = \frac{8}{10}$                 | $\frac{9}{00} \times \frac{80}{100}$  |
| $p_e = p_e$                     | $_1 + p_{e2} = 0.6$                   | 586      |          | accuracy                                             |                        | $p_e = p_{e1} + $                       | $p_{e2} = 0.734$                      |
| $p_0 =$                         | $=\frac{89}{100}=0.89$                | ŀ        | к = 1: р | erfect model                                         | 7                      | $p_0 = \frac{81}{10}$                   | $\frac{1}{0} = 0.81$                  |
| $= \frac{p_0 - p_e}{1 - p_e} =$ | $\frac{0.204}{0.314} \approx 0$       | .65      |          | ance<br>ne model performand<br>l to a random classif | $\kappa = \frac{p}{1}$ | $\frac{0-p_e}{1-p_e} = \frac{0.0}{0.2}$ | $\frac{076}{266} = 0.29$              |



# Exercise: 01\_Training\_a\_Decision\_Tree\_Model

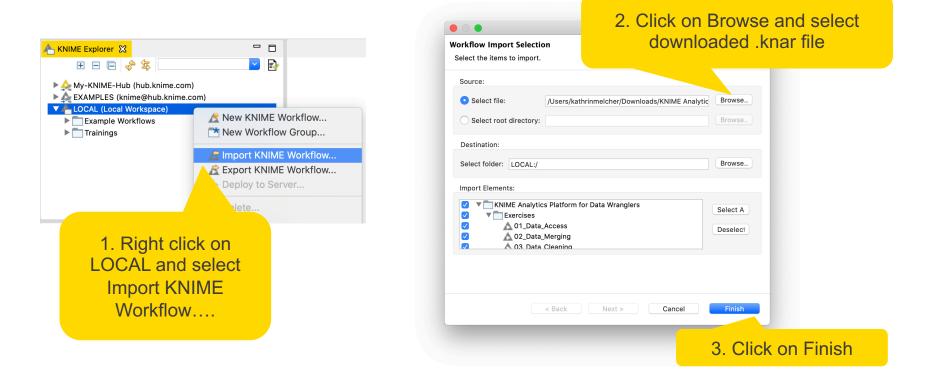
- Dataset: Sales data of individual residential properties in Ames, Iowa from 2006 to 2010.
- One of the columns is the overall condition ranking, with values between 1 and 10.
- Goal: train a binary classification model, which can predict whether the overall condition is high or low.

You can download the training workflows from the KNIME Hub: https://hub.knime.com/knime/spaces/Education/latest/Courses/

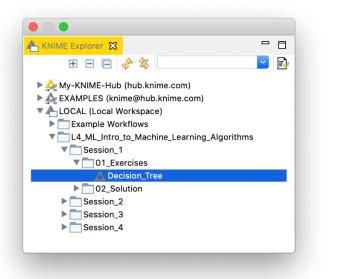


### **Exercise Session 1**

Import the course material to KNIME Analytics Platform



### **Exercise:** Decision\_Tree



#### Use Case Description

The dataset we use in this exercise describes the sale of individual residential properties in Ames, lowa from 2006 to 2010. One of the columns is the overall condition ranking, with values between 1 and 10.

The goal of this exercise is to train a binary classification model, which can predict whether the overall condition is high or low. To do so, the workflow below reads the data set and creates the class column based on overall condition ranking, which is called rank and has the values low if the overall condition is smaller or equal to 5, otherwise high.

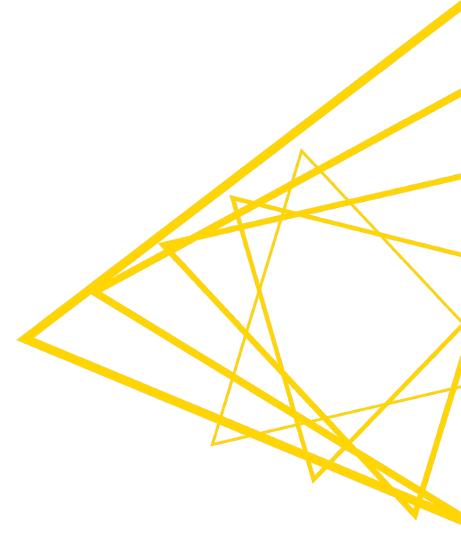
It is now on you continue this workflow!

#### Exercise: Decision Tree

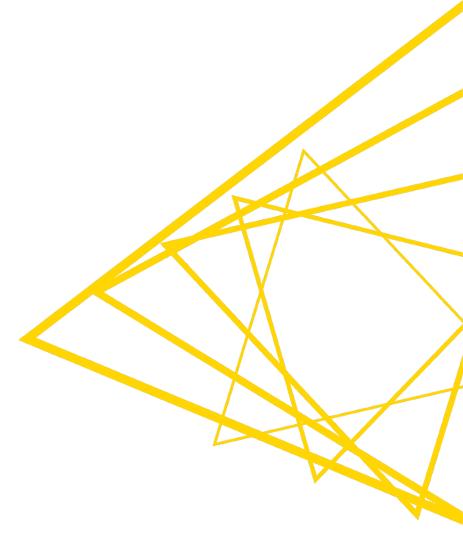
 Use a Partitioning node to split data into training (70%) e test set (30%) - use stratified sampling based on the column rank, to retain the distribution of the class values in both output tabes. 2) Train a Decision Tree model to predict the overall condition of a house (high/low) (Decision Tree Learner node) - Select the "rank" column as the class column 2) Use the trained model to predict the rank of the houses in the test set (Decision Tree Predictor node) 3) Evaluate the accuracy of the decision tree model (Scorer (Java Script) node) Select "rank" as the actual column and "Prediction (rank)" as the predicted column What is the accuracy of the model? 4) Visualize the ROC curve (ROC Curve node) Make sure that checkbox "append columns with normalized class distribution" in the Decision Tree Predictor node is activated - Select "rank" as Class column and "High" as Positive class value. Include only the "P (rank=High)" column 5) Optional: Try different setting options for the decision tree algorithm. Can you improve the model performance? Extract Class File Reader Information D, Read AmesHousing.csv



# Session II: Regression Models, Ensemble Models & Logistic Regression



# **Regression Problems**



## **Regression Analysis**

- Prediction of numerical target values
- Commonality with models for classification
  - First, construct a model
  - Second, use model to predict unknown value
    - Major method for prediction is regression in all its flavors
      - Simple and multiple regression
      - Linear and non-linear regression
- Difference from classification
  - Classification aims at predicting categorical class label
  - Regression models aim at predicting values from continuous-valued functions



# Regression

#### Predict numeric outcomes on existing data (supervised)

Variable

Petal.Length

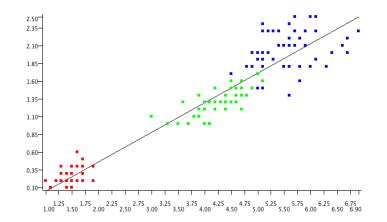
Intercept

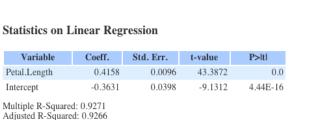
#### Applications

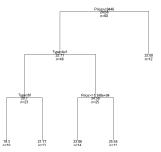
- Forecasting
- **Quantitative Analysis**

### Methods

- Linear
- Polynomial
- **Regression Trees**
- Partial Least Squares

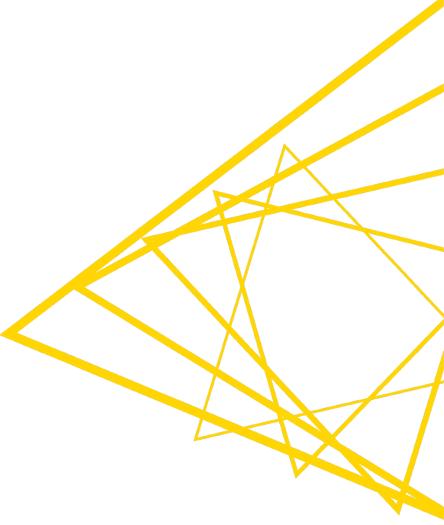








# **Linear Regression Algorithm**



Predicts the values of the target variable ybased on a linear combination of the values of the input feature(s)  $x_i$ 

Two input features:  $\hat{y} = a_0 + a_1 x_1 + a_2 x_2$ 

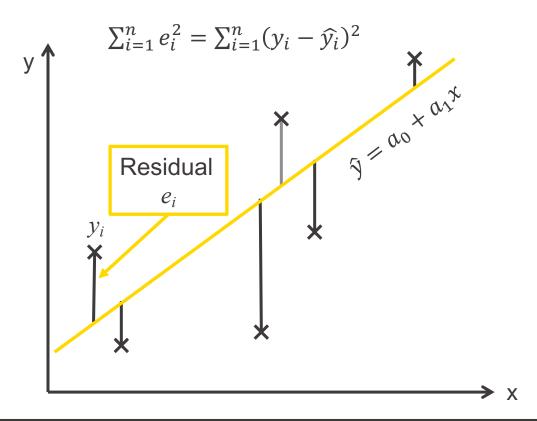
p input features:  $\hat{y} = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_p x_p$ 

- Residuals: differences between observed and predicted values (errors)
   Use the residuals to measure the model fit



# **Simple Linear Regression**

Optimization goal: minimize sum of squared residuals



### **Simple Linear Regression**

• Think of a straight line  $\hat{y} = f(x) = a + bx$ 

- Find *a* and *b* to model all observations  $(x_i, y_i)$  as close as possible
- SSE  $F(a, b) = \sum_{i=1}^{n} (f(x) y_i)^2 = \sum_{i=1}^{n} (a + bx_i y_i)^2$  should be minimal

That is:

$$\frac{\partial F}{\partial a} = \sum_{i=1}^{n} 2(a + bx_i - y_i) = 0$$
$$\frac{\partial F}{\partial b} = \sum_{i=1}^{n} 2(a + bx_i - y_i) x_i = 0$$

•  $\rightarrow$  A unique solution exists for *a* and *b* 



### **Linear Regression**

Optimization goal: minimize the squared residuals

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \sum_{j=0}^{n} a_j x_{j,i})^2 = (y - aX)^T (y - aX)$$

Solution:

$$\hat{a} = (X^T X)^{-1} X^T y$$

Linear Regression Learner



- Computational issues:
  - X<sup>T</sup>X must have full rank, and thus be invertible
     (Problems arise if linear dependencies between input features exist)
  - Solution may be unstable, if input features are almost linearly dependent



# **Linear Regression: Summary**

- Positive:
  - Strong mathematical foundation
  - Simple to calculate and to understand (For moderate number of dimensions)
  - High predictive accuracy (In many applications)
- Negative:
  - Many dependencies are non-linear (Can be generalized)
  - Model is global and cannot adapt well to locally different data distributions But: Locally weighted regression, CART



Predicts the values of the target variable ybased on a polynomial combination of degree d of the values of the input feature(s)  $x_i$ 

$$\tilde{y} = a_0 + \sum_{j=1}^p a_{j,1}x_j + \sum_{j=1}^p a_{j,2}x_j^2 + \dots + \sum_{j=1}^p a_{j,d}x_j^d$$

- Simple regression: one input feature  $\rightarrow$  regression curve
- Multiple regression: several input features  $\rightarrow$  regression hypersurface
- Residuals: differences between observed and predicted values (errors)
   Use the residuals to measure the model fit



# **Evaluation of Regression Models**

### **Numeric Errors: Formulas**

| Error Metric                          | Formula                                                                             | Notes                                                            |
|---------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------|
| R-squared                             | $1 - \frac{\sum_{i=1}^{n} (y_i - f(x_i))^2}{\sum_{i=1}^{n} (y_i - \overline{y})^2}$ | Universal range: the closer to 1 the better                      |
| Mean absolute error (MAE)             | $\frac{1}{n}\sum_{i=1}^{n} y_i - f(x_i) $                                           | Equal weights to all distances<br>Same unit as the target column |
| Mean squared error (MSE)              | $\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$                                       | Common loss function                                             |
| Root mean squared error (RMSE)        | $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i - f(x_i))^2}$                                  | Weights big differences more<br>Same unit as the target column   |
| Mean signed difference                | $\frac{1}{n}\sum_{i=1}^{n} (y_i - f(x_i))$                                          | Only informative about the direction of the error                |
| Mean absolute percentage error (MAPE) | $\frac{1}{n} \sum_{i=1}^{n} \frac{ y_i - f(x_i) }{ y_i }$                           | Requires non-zero target column values                           |



### MAE (Mean Absolute Error) vs. RMSE (Root Mean Squared Error)

| MAE                                             | RMSE                                                |
|-------------------------------------------------|-----------------------------------------------------|
| Easy to interpret – mean average absolute error | Cannot be directly interpreted as the average error |
| All errors are equally weighted                 | Larger errors are weighted more                     |
| Generally smaller than RMSE                     | Ideal when large deviations need to be avoided      |

Example: Actual values = [2,4,5,8], Case 1: Predicted Values = [4, 6, 8, 10] Case 2: Predicted Values = [4, 6, 8, 14]

|        | MAE  | RMSE |
|--------|------|------|
| Case 1 | 2.25 | 2.29 |
| Case 2 | 3.25 | 3.64 |

## **R-squared vs. RMSE**

| R-squared                                                                     | RMSE                                                          |
|-------------------------------------------------------------------------------|---------------------------------------------------------------|
| <b>Relative measure</b> :<br>Proportion of variability explained by the model | <b>Absolute measure</b> :<br>How much deviation at each point |
| Range:<br>0 (no variability explained) to<br>1 (all variability explained)    | Same scale as the target                                      |

Example:

Actual values = [2,4,5,8],

Case 1: Predicted Values = [3, 4, 5, 6]

Case 2: Predicted Values = [3, 3, 7, 7]

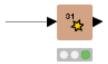
|  |        | R-sq | RMSE |  |
|--|--------|------|------|--|
|  | Case 1 | 0.96 | 1.12 |  |
|  | Case 2 | 0.65 | 1.32 |  |



### **Numeric Scorer**

- Similar to scorer node, but for nodes with *numeric* predictions
- Compare dependent variable values to predicted values to evaluate model quality.
- Report R<sup>2</sup>, RMSE, MAPE, etc.

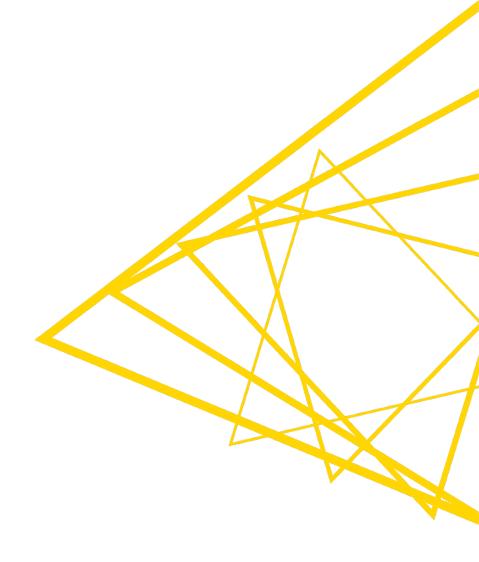
Numeric Scorer



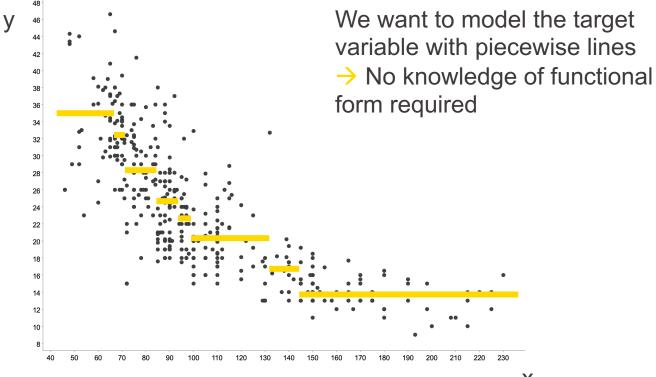
| ▲ Statistics - 0:393 - Numeric Scorer |                  |                 |                |  | × |
|---------------------------------------|------------------|-----------------|----------------|--|---|
| File Hilite Navigation View           |                  |                 |                |  |   |
| Table "Scores" - Rows: 6              | Spec - Column: 1 | Properties      | Flow Variables |  |   |
| Row ID                                | D MA(Irr         | egular Componer | nt)            |  |   |
| R^2                                   | 0.343            |                 |                |  |   |
| mean absolute error                   | 0.773            |                 |                |  |   |
| mean squared error                    | 2.413            |                 |                |  |   |
| root mean squared err                 | 1.553            |                 |                |  |   |
| mean signed difference                | -0.003           |                 |                |  |   |
| mean absolute percent                 | 7.064            |                 |                |  |   |
|                                       |                  |                 |                |  |   |
|                                       |                  |                 |                |  |   |
|                                       |                  |                 |                |  |   |



# **Regression Tree**

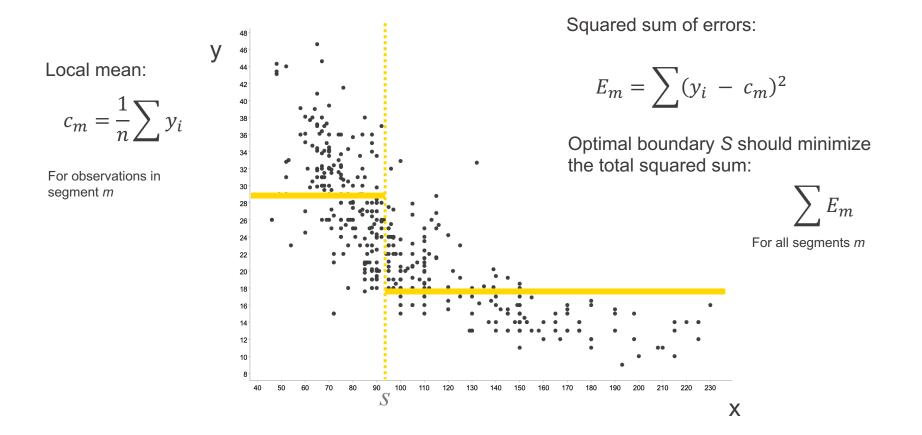


### **Regression Tree: Goal**

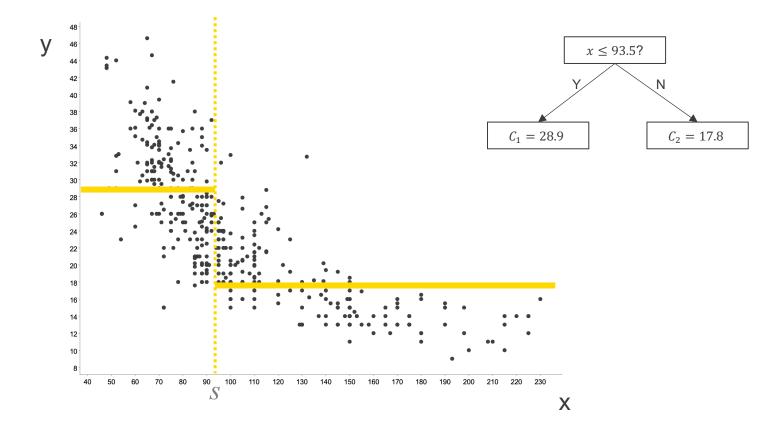


77

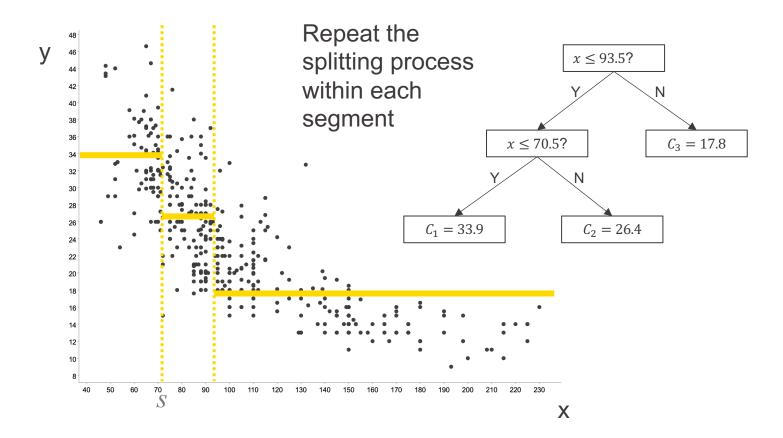
## **Regression Tree: Initial Split**



### **Regression Tree: Initial Split**

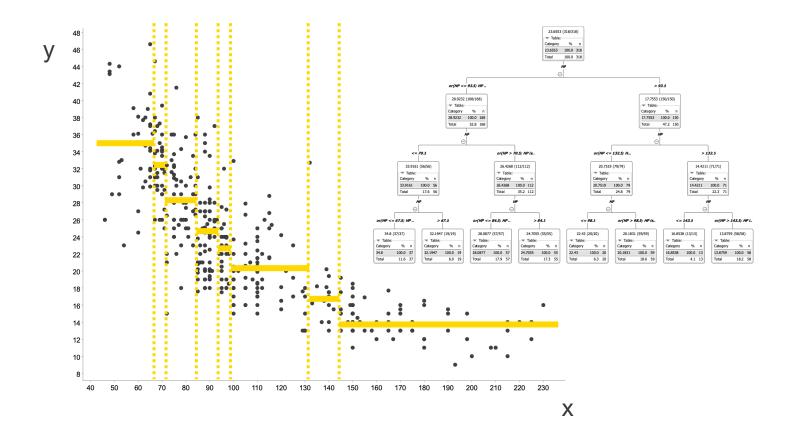


### **Regression Tree: Growing the Tree**





### **Regression Tree: Final Model**





Start with a single node containing all points.

- 1. Calculate  $c_i$  and  $E_i$ .
- 2. If all points have the same value for feature  $x_i$ , stop.
- 3. Otherwise, find the best binary splits that reduces  $E_{j,s}$  as much as possible.
  - $E_{j,s}$  doesn't reduce as much  $\rightarrow$  stop
  - A node contains less than the minimum node size  $\rightarrow$  stop
  - Otherwise, take that split, creating two new nodes.
  - In each new node, go back to step 1.



Simple Regression



# **Regression Trees: Summary**

- Differences to decision trees:
  - Splitting criterion: minimizing intra-subset variation (error)
  - Pruning criterion: based on numeric error measure
  - Leaf node predicts average target values of training instances reaching that node
- Can approximate piecewise constant functions
- Easy to interpret

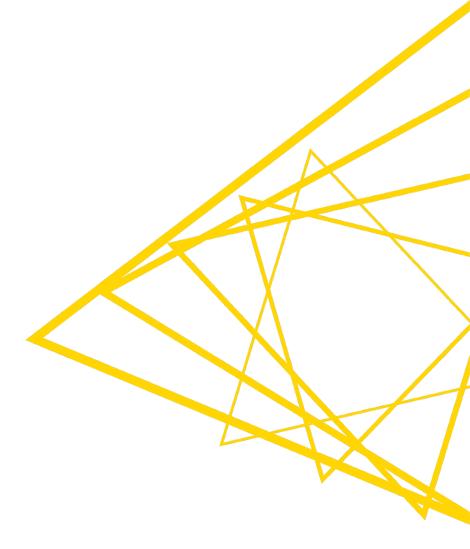


## **Regression Trees: Pros & Cons**

- Finding of (local) regression values (average)
- Problems:
  - No interpolation across borders
  - Heuristic algorithm: unstable and not optimal.
- Extensions:
  - Fuzzy trees (better interpolation)
  - Local models for each leaf (linear, quadratic)

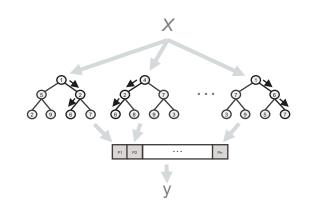


# **Ensemble Models**



## **Tree Ensemble Models**

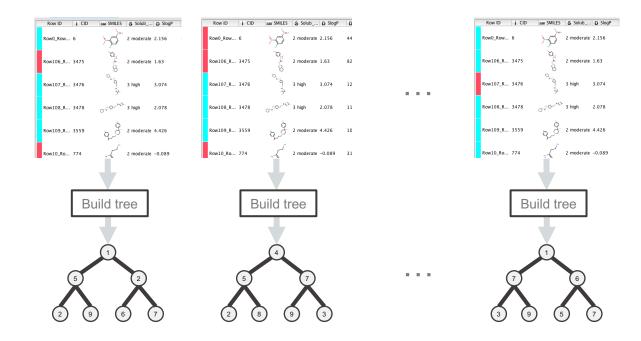
- General idea: take advantage of the "wisdom of the crowd"
- Ensemble models: Combining predictions from many predictors, e.g. decision trees
- Leads to a more accurate and robust model
- Model is difficult to interpret
  - There are multiple trees in the model



Typically for classification, the individual models vote and the majority wins; for regression, the individual predictions are averaged

# **Bagging - Idea**

- One option is "bagging" (Bootstrap AGGregatING)
- For each tree / model a training set is generated by sampling uniformly with replacement from the standard training set



# **Example for Bagging**

#### Full training set

| RowID | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | у       |
|-------|-----------------------|-----------------------|---------|
| Row_1 | 2                     | 6                     | Class 1 |
| Row_2 | 4                     | 1                     | Class 2 |
| Row_3 | 9                     | 3                     | Class 2 |
| Row_4 | 2                     | 7                     | Class 1 |
| Row_5 | 8                     | 1                     | Class 2 |
| Row_6 | 2                     | 6                     | Class 1 |
| Row_7 | 5                     | 2                     | Class 2 |

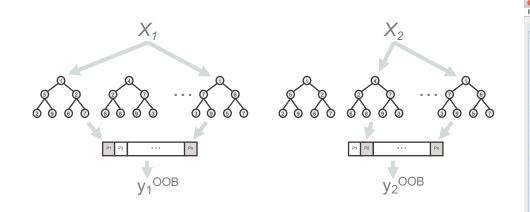
#### Sampled training set

| RowID | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | у       |
|-------|-----------------------|-----------------------|---------|
| Row_3 | 9                     | 3                     | Class 2 |
| Row_6 | 2                     | 6                     | Class 1 |
| Row_1 | 2                     | 6                     | Class 1 |
| Row_3 | 9                     | 3                     | Class 2 |
| Row_5 | 8                     | 1                     | Class 2 |
| Row_6 | 2                     | 6                     | Class 1 |
| Row_1 | 2                     | 6                     | Class 1 |



# An Extra Benefit of Bagging: Out of Bag Estimation

- Able to evaluate the model using the training data
- Apply trees to samples that haven't been used for training



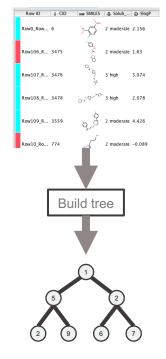
| le Hilite | Navigation | View             |               |                    |           |                               |
|-----------|------------|------------------|---------------|--------------------|-----------|-------------------------------|
|           | Table      | "default" - Rows | s: 2666 Spec  | - Columns: 26 Pr   | operties  | Flow Variables                |
| Row ID    | S State    | D P (Churn=0)    | D P (Churn=1) | S Churn (Out-of-ba | ig) D Chu | rn (Out-of-bag)   model count |
| Row1_Row0 | :S         | 0.943            | 0.057         | 0                  | 0.943     | 35                            |
| Row2_Row1 | ж          | 1                | 0             | 0                  | 1         | 33                            |
| Row3_Row2 | IJ         | 1                | 0             | 0                  | 1         | 37                            |
| Row4_Row3 | ЭН         | 0.528            | 0.472         | 0                  | 0.528     | 36                            |
| Row5_Row4 | Ж          | 0.976            | 0.024         | 0                  | 0.976     | 41                            |
| Row6_Row5 | ۰L         | 0.848            | 0.152         | 0                  | 0.848     | 33                            |
| Row7_Row6 | 1A         | 0.833            | 0.167         | 0                  | 0.833     | 36                            |
| Row9_Row8 | A          | 0.667            | 0.333         | 0                  | 0.667     | 30                            |
| Row11_Ro  | N          | 0.138            | 0.862         | 1                  | 0.862     | 29                            |
| Row13_Ro  | 4          | 0.974            | 0.026         | 0                  | 0.974     | 39                            |
| Row14_Ro  | 4T         | 0.917            | 0.083         | 0                  | 0.917     | 36                            |
| Row15_Ro  | 4          | 0.387            | 0.613         | 1                  | 0.613     | 31                            |
| Row18_Ro  | т          | 0.974            | 0.026         | 0                  | 0.974     | 39                            |
| Row19_Ro  | 'A         | 1                | 0             | 0                  | 1         | 38                            |
| Row21_Ro  | L          | 0.971            | 0.029         | 0                  | 0.971     | 34                            |
| Row22_Ro  | :0         | 0.03             | 0.97          | 1                  | 0.97      | 33                            |
| Row23_Ro  | ۰Z         | 0.854            | 0.146         | 0                  | 0.854     | 41                            |
| Row25_Ro  | 'A         | 0.973            | 0.027         | 0                  | 0.973     | 37                            |
| Row26_Ro  | IE         | 0.886            | 0.114         | 0                  | 0.886     | 35                            |
| Row27_Ro  | VY .       | 0.912            | 0.088         | 0                  | 0.912     | 34                            |
| Row28_Ro  | 4T         | 0.976            | 0.024         | 0                  | 0.976     | 42                            |
| Row29_Ro  | 10         | 1                | 0             | 0                  | 1         | 42                            |
| Row30_Ro  | 11         | 1                | 0             | 0                  | 1         | 40                            |
| Row32_Ro  | IH         | 0.914            | 0.086         | 0                  | 0.914     | 35                            |
| Row33_Ro  | A          | 0.875            | 0.125         | 0                  | 0.875     | 32                            |



© 2021 KNIME AG. All rights reserved.

#### **Random Forest**

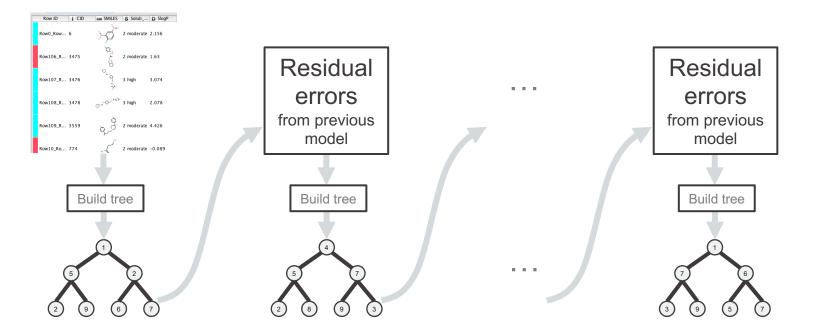
- Bag of decision trees, with an extra element of randomization
- Each node in the decision tree only "sees" a subset of the input features, typically  $\sqrt{N}$  to pick from
- Random forests tend to be very robust w.r.t. overfitting





# **Boosting - Idea**

- Starts with a single tree built from the data
- Fits a tree to residual errors from the previous model to refine the model sequentially



# **Boosting - Idea**

#### Gradient boosting method

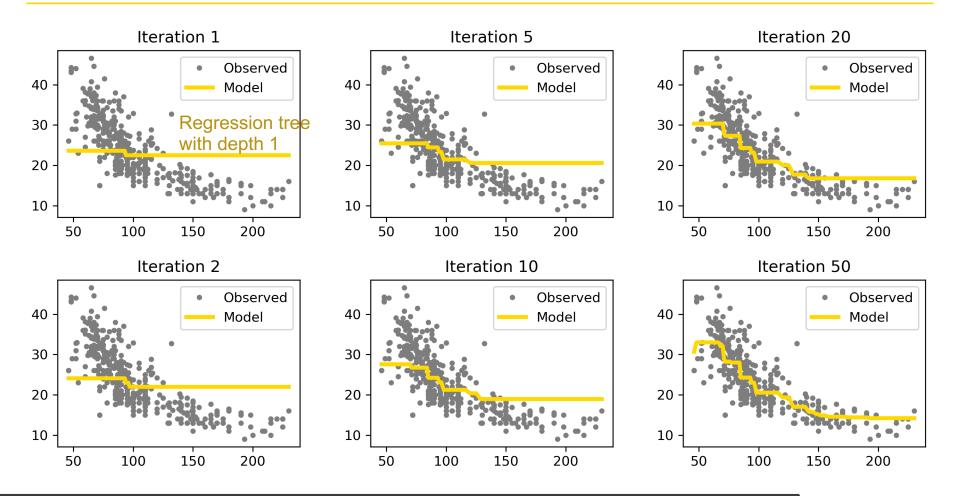
- A shallow tree (depth 4 or less) is built at each step
  - To fit residual errors from the previous step
  - Resulting in a tree  $h_m(x)$
- The resulting tree is added to the latest model to update

 $F_m(x) = F_{m-1}(x) + \gamma_m h_m(x)$ 

- Where  $F_{m-1}(x)$  is the model from the previous step
- The weight  $\gamma_m$  is chosen to minimize the loss function
  - Loss function: quantifies the difference between model predictions and data



# **Gradient Boosting Example – Regression**

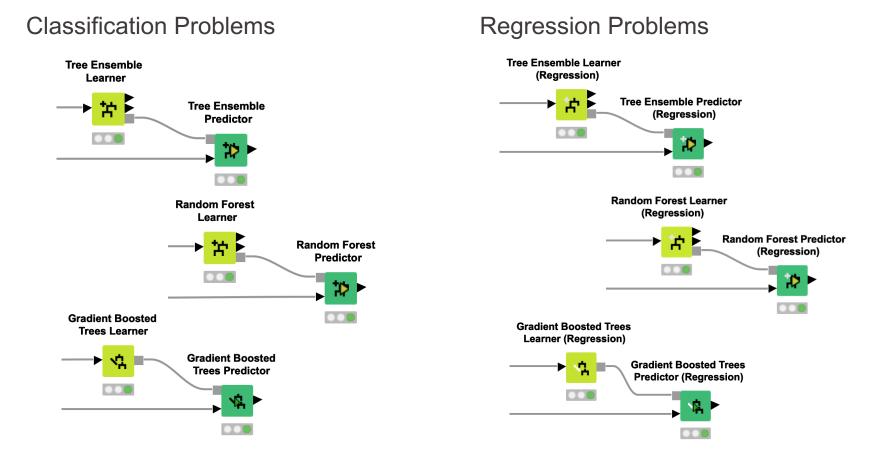


#### **Gradient Boosted Trees**

- Can be used for classification and regression
- Large number of iterations prone to overfitting
  - ~100 iterations are sufficient
- Can introduce randomness in choice of data subsets ("stochastic gradient boosting") and choice of input features

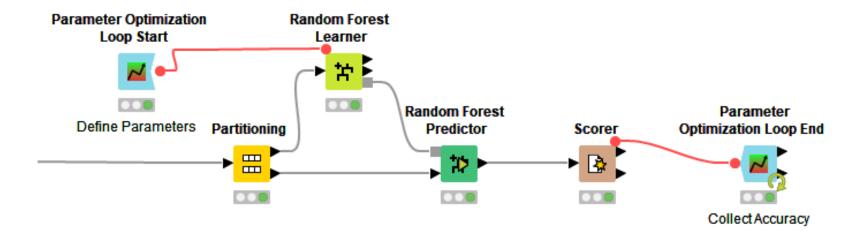


# **Ensemble Tree Nodes in KNIME Analytics Platform**



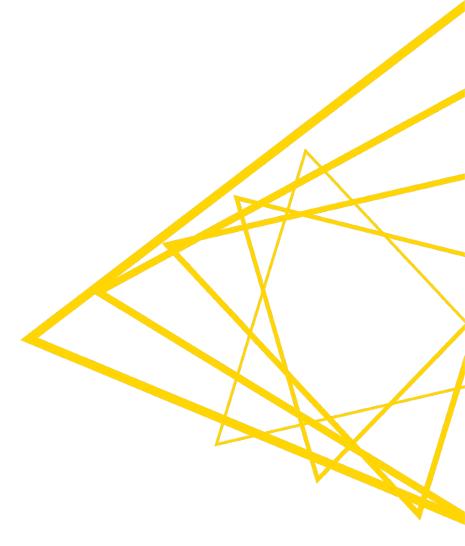


#### **Parameter Optimization**



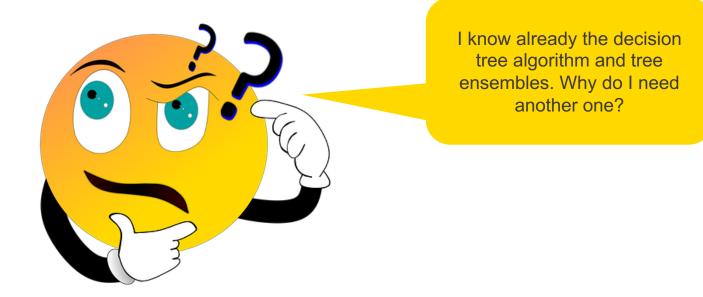


# **Logistic Regression**



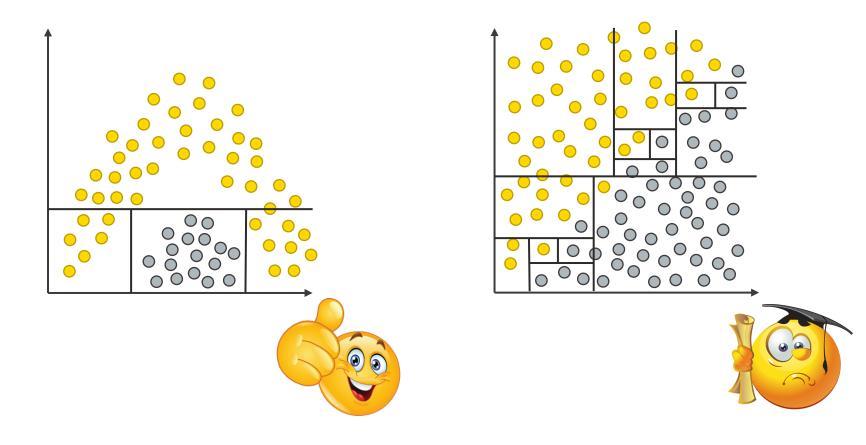
# What is a Logistic Regression (algorithm)?

Another algorithm to train a classification model



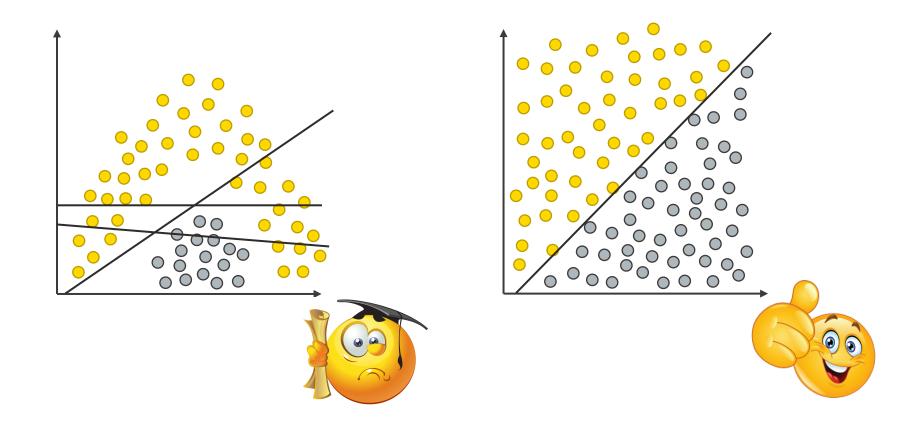


#### Why Shouldn't we Always use the Decision Tree?





#### **Decision Boundary of a Logistic Regression**





|                                              | Linear Regression                                                                                         | Logistic Regression                                                                 |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Target variable y                            | Numeric $y \in (-\infty, \infty)/[a, b]$                                                                  | <b>Nominal</b> $y \in \{0, 1, 2, 3\}/\{red, white\}$                                |
| Functional relationship between features and | target value y<br>$y = f(x_1,, x_n, \beta_0,, \beta_n)$ $y = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$ | class probability P (y = class i)<br>$P(y = c_i) = f(x_1,, x_n, \beta_0,, \beta_n)$ |

**Goal:** Find the regression coefficients  $\beta_0, ..., \beta_n$ 



# Let's find out how Binary Logistic Regression works!

- Idea: Train a function, which gives us the probability for each class (0 and 1) based on the input features
- Recap on probabilities
  - Probabilities are always between 0 and 1
  - The probability of all classes sum up to 1

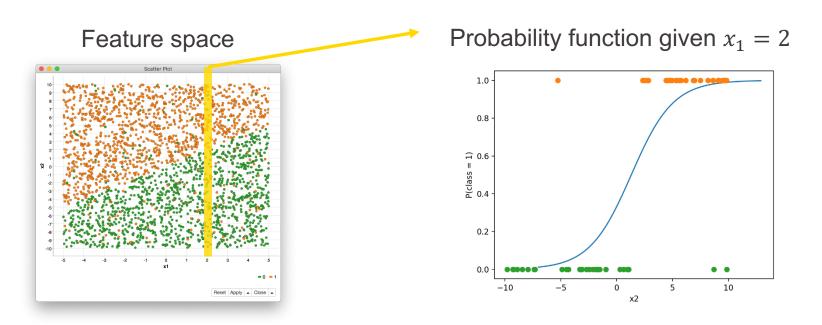
$$P(y = 1) = p_1 = P(y = 0) = 1 - p_1$$

 $\rightarrow$  It's sufficient to model the probability for one class



#### Let's Find Out How Binary Logistic Regression Works!

$$P(y = 1) = f(x_1, x_2; \beta_0, \beta_1, \beta_2) \coloneqq \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2)}}$$





## More General: Binary Logistic Regression

Model:

$$\pi = P(y = 1) = \frac{1}{1 + \exp(-z)}$$

With  $z = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n = X \boldsymbol{\beta}$ .

- Goal: Find the regression coefficients  $\boldsymbol{\beta} = (\beta_0, ..., \beta_n)$
- Notation:
  - y<sub>i</sub> is the class value for sample i
  - $x_1, \dots, x_n$  is the set of input features,  $X = (1, x_1, \dots, x_n)$
  - The training data set has *m* observations  $(y_i, x_1^i, ..., x_n^i)$



#### How can we Find the Best Coefficients $\beta$ ?

Maximize the product of the probabilities -> Likelihood function

$$L(\beta; y, X) = \prod_{i=1}^{m} P(y = y_i) = \prod_{i=1}^{m} \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

Why does it make sense to maximize this function?

$$P(y = y_i) = \begin{cases} \pi_i & \text{if } y_i = 1\\ 1 - \pi_i & \text{if } y_i = 0 \end{cases}$$
$$= \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

Remember:  

$$\pi_i = P(y = 1)$$
  
 $u^0 = 1$  for  $u \in \mathbb{R}$   
 $u^1 = u$  for  $u \in \mathbb{R}$ 



### Max Likelihood and Log Likelihood Functions

• Maximize the Likelihood function  $L(\beta; y, X)$ 

$$\max_{\beta} L(\beta; y, X) = \max_{\beta} \prod_{i=1}^{m} \pi_{i}^{y_{i}} (1 - \pi_{i})^{1 - y_{i}}$$

• Equivalent to maximizing the Log Likelihood function  $LL(\beta; y, X)$ 

$$\max_{\beta} LL(\boldsymbol{\beta}; \boldsymbol{y}, \boldsymbol{X}) = \max_{\beta} \sum_{i=1}^{n} y_i \ln(\pi_i) + (1 - y_i) \ln(1 - \pi_i)$$



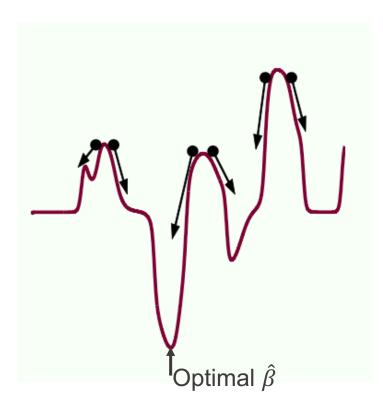
# How can we find this Coefficients?

- To find the coefficients of our model we want to find β so that the value of the function LL(β; y, X) is maximal
- KNIME Analytics Platform provides two algorithms
  - Iteratively re-weighted least squares
    - Uses the idea of the newton method
  - Stochastic average gradient descent



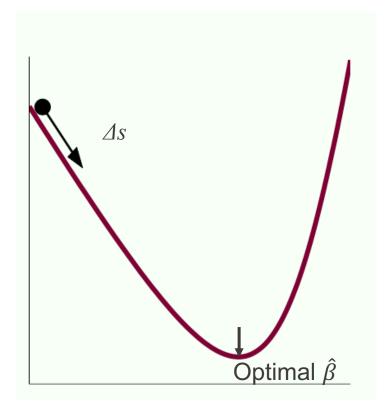
## **Idea: Gradient Descent Method**

$$\max LL(\boldsymbol{\beta}; \boldsymbol{X}, \boldsymbol{y}) \Leftrightarrow \min -LL(\boldsymbol{\beta}; \boldsymbol{X}, \boldsymbol{y})$$





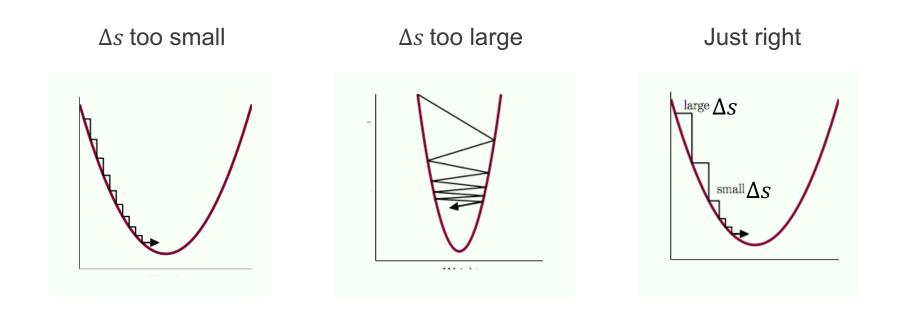
# **Idea: Gradient Descent Method**



#### $\max LL(\boldsymbol{\beta}; \boldsymbol{X}, \boldsymbol{y}) \Leftrightarrow \min -LL(\boldsymbol{\beta}; \boldsymbol{X}, \boldsymbol{y})$

- Example: min  $-LL(\beta) \coloneqq f(\beta)$
- Start from an arbitrary point
- Move towards the minimum
- With step size  $\Delta s$
- If *f*(β) is strictly convex
   → Only one global minimum exists
- Z normalization of the input data lead to better convergence

#### **Learning Rate / Step Length** $\Delta s$





# **Learning Rate** $\Delta s$

• Fixed:

$$\Delta s_k = \Delta s_0$$

• Annealing:

$$\Delta s_k = \frac{\Delta s_0}{1 + \frac{\alpha}{k}}$$

with iteration number k and decay rate  $\alpha$ 

Line Search: Learning rate strategy that tries to find the optimal learning rate



# Is there a way to handle Overfitting as well? (optional)

- To avoid overfitting: add regularization by penalizing large weights
  - $L_2$  regularizations = Coefficients are Gauss distributed with  $\sigma = \frac{1}{4}$

$$l(\hat{\beta}; y, X) \coloneqq -LL(\hat{\beta}; y, X) + \frac{\lambda}{2} ||\hat{\beta}||_2^2$$

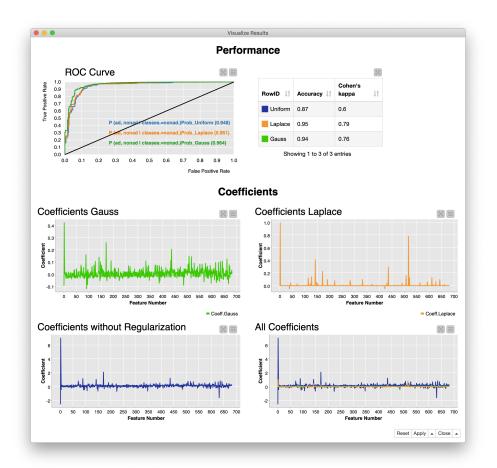
•  $L_1$  regularizations = Coefficients are Laplace distributed with  $\sigma = \frac{\sqrt{2}}{\lambda}$ 

$$l(\hat{\beta}; y, X) \coloneqq -LL(\hat{\beta}; y, X) + \lambda ||\hat{\beta}||_{1}$$

=> The smaller  $\sigma$ , the smaller the coefficients  $\hat{\beta}$ 



#### **Impact of Regularization**





## **Interpretation of the Coefficients**

| e Hilite  | Navigation     | View                      |               |           |           |               |
|-----------|----------------|---------------------------|---------------|-----------|-----------|---------------|
| Table "Co | oefficients an | d Statistics" – Rows: 237 | Spec – Column | s: 6 Prop | erties F  | low Variables |
| Row ID    | S Logit        | S Variable                | D Coeff.      | D Std. Er | r. D z-sc | ore D P> z    |
| Row75     | High           | Year Built                | -2.153        | 0.605     | -3.56     | 0             |
| Row76     | High           | Year Remod/Add            | 1.643         | 0.298     | 5.506     | 0             |
| Row77     | High           | Roof Style=Gable          | 0.918         | 5.353     | 0.171     | 0.864         |
| Row78     | High           | Roof Style=Gambrel        | -0.494        | 5.514     | -0.09     | 0.929         |
| Row79     | High           | Roof Style=Hip            | 1.075         | 5.43      | 0.198     | 0.843         |
| Row80     | High           | Roof Style=Mansard        | -2.415        | 6.658     | -0.363    | 0.717         |
| Row81     | High           | Roof Style=Shed           | -2.269        | 11.793    | -0.192    | 0.847         |
| Row82     | High           | Roof Matl=Membran         | -0.014        | 140.765   | -0        | 1             |

- Interpretation of the sign
  - $\beta_i > 0$ : Bigger  $x_i$  lead to higher probability
  - $\beta_i < 0$  : Bigger  $x_i$  lead to smaller probability



#### Interpretation of the p Value

| e Hilite | Navigation       | View                    |              |             |             |             |
|----------|------------------|-------------------------|--------------|-------------|-------------|-------------|
| Table "C | Coefficients and | Statistics" – Rows: 237 | Spec – Colum | ns: 6 Prope | erties Flow | / Variables |
| Row ID   | S Logit          | S Variable              | D Coeff.     | D Std. Err  | . D z-score | D P> z      |
| Row75    | High             | Year Built              | -2.153       | 0.605       | -3.56       | 0           |
| Row76    | High             | Year Remod/Add          | 1.643        | 0.298       | 5.506       | 0           |
| Row77    | High             | Roof Style=Gable        | 0.918        | 5.353       | 0.171       | 0.864       |
| Row78    | High             | Roof Style=Gambrel      | -0.494       | 5.514       | -0.09       | 0.929       |
| Row79    | High             | Roof Style=Hip          | 1.075        | 5.43        | 0.198       | 0.843       |
| Row80    | High             | Roof Style=Mansard      | -2.415       | 6.658       | -0.363      | 0.717       |
| Row81    | High             | Roof Style=Shed         | -2.269       | 11.793      | -0.192      | 0.847       |
| Row82    | High             | Roof Matl=Membran       | -0.014       | 140.765     | -0          | 1           |

• p-value <  $\alpha$ : input feature has a significant impact on the dependent variable.



# **Summary Logistic Regression**

- Logistic regression is used for classification problems
- The regression coefficients are calculated by maximizing the likelihood function, which has no closed form solution, hence iterative methods are used.
- Regularization can be used to avoid overfitting.
- The p-value shows us whether an independent variable is significant



# **Exercises**

- Regression Exercises:
  - Goal: Predicting the house price
  - 01\_Linear\_Regression
  - 02\_Regression\_Tree
- Classification Exercises:
  - Goal: Predicting the house condition (high /low)
  - 03\_Radom\_Forest (with optional exercise to build a parameter optimization loop)
  - 04\_Logistic\_Regression

| A KNIME Explorer 🔀                        |   |   |
|-------------------------------------------|---|---|
|                                           | ~ | E |
| ▶ 🚕 My-KNIME-Hub (hub.knime.com)          |   |   |
| EXAMPLES (knime@hub.knime.com)            |   |   |
| 🔻 📥 LOCAL (Local Workspace)               |   |   |
| Example Workflows                         |   |   |
| L4_ML_Intro_to_Machine_Learning_Algorithm | s |   |
| Session_1                                 |   |   |
| The session_2                             |   |   |
| ▼ 101_Exercises                           |   |   |
| 🛕 01_Linear_Regression                    |   |   |
| ▲ 02_Regression_Tree                      |   |   |
| 🛕 03_Random_Forest                        |   |   |
| 🛕 04_Logistic_Regression                  |   |   |
| 02_Solution                               |   |   |
| 🛕 01_Linear_Regression_solution           |   |   |
| ▲ 02_Regression_Tree_solution             |   |   |
| ▲ 03_Random_Forest_solution               |   |   |
| 🛕 04_Logistic_Regression_solution         |   |   |
| ▶ 🛅 Session_3                             |   |   |
| ▶ 🛅 Session_4                             |   |   |

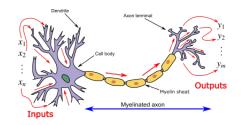


# Session 3: Neural Networks and Recommendation Engines

# **Artificial Neurons and Networks**

## **Biological vs. Artificial**

#### **Biological Neuron**



#### Artificial Neuron (Perceptron)

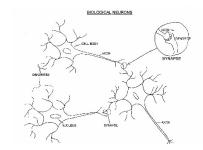
 $y = f(x_1w_1 + x_2w_2 + b)$ 

 $b = w_0$ 

 $y = f(\sum x_i w_i)$ 

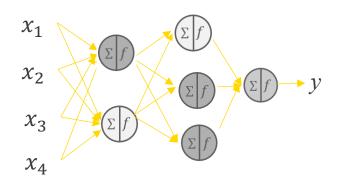
 $\mathcal{V}$ 

#### **Biological Neural Networks**



#### Artificial Neural Networks

(Multilayer Perceptron, MLP)



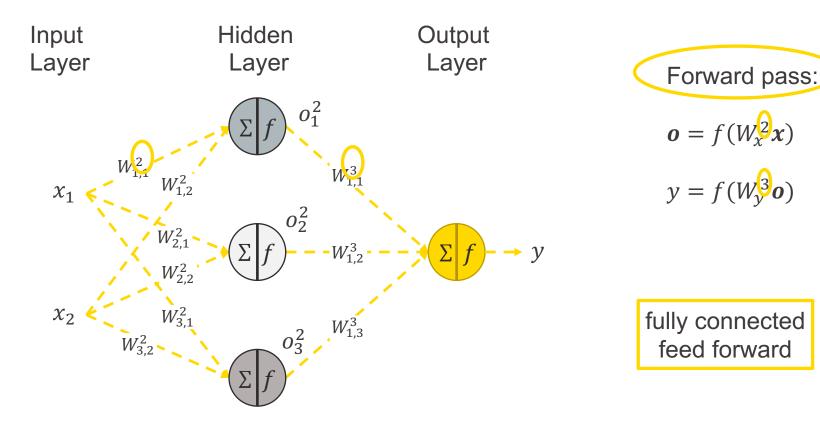


 $x_1$ 

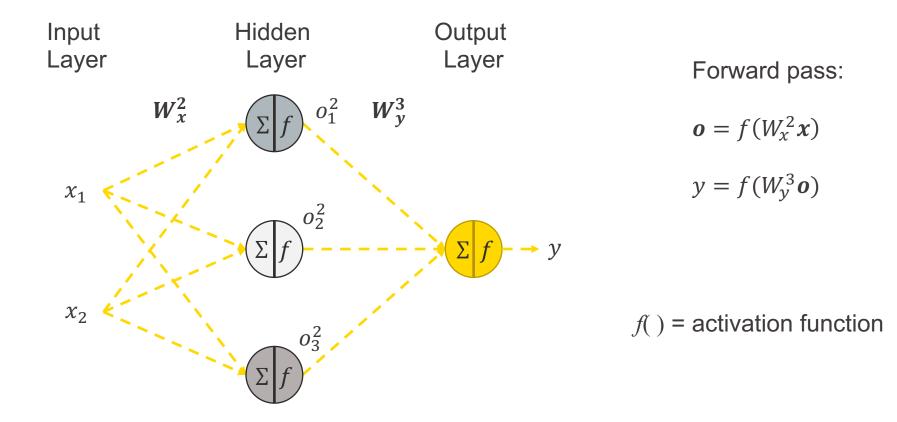
 $x_2$ 

 $W_1$ 

 $W_2$ 

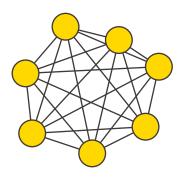








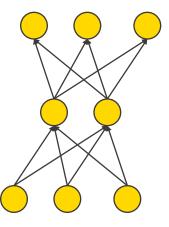
completely connected



example:

- Associative neural network
- Hopfield

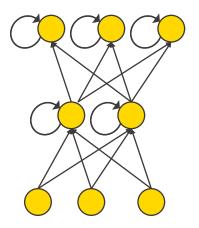
feedforward (directed, a-cyclic)



example:

- auto associative neural network
- Multi Layer Perceptron

recurrent (feedback connections)

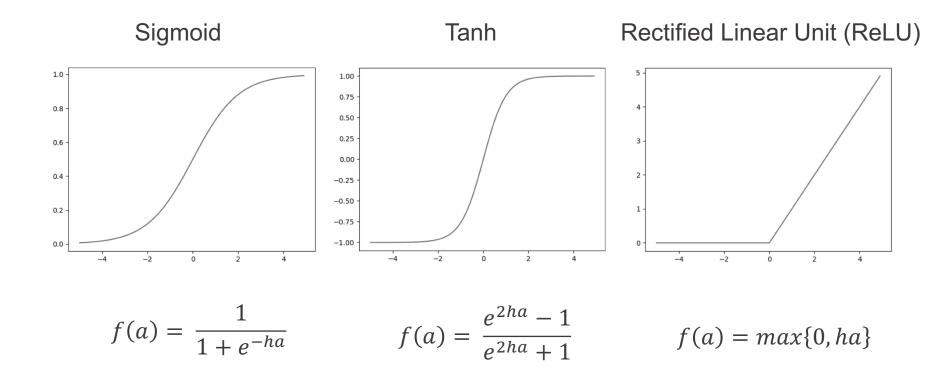


example:

 recurrent neural network (for time series recognition)



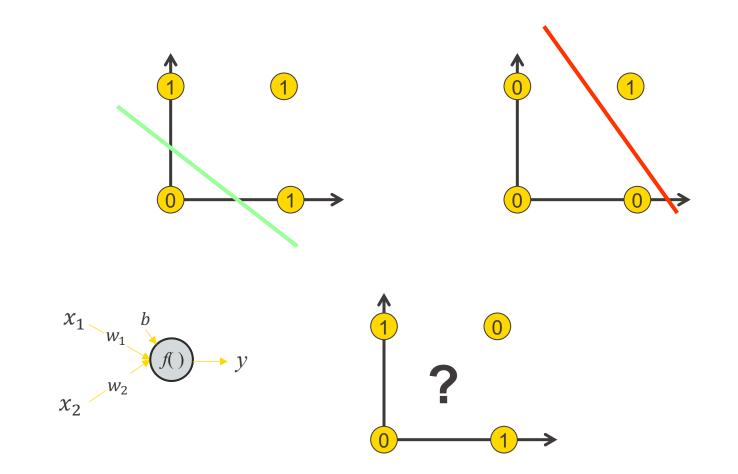
## **Frequently used activation functions**





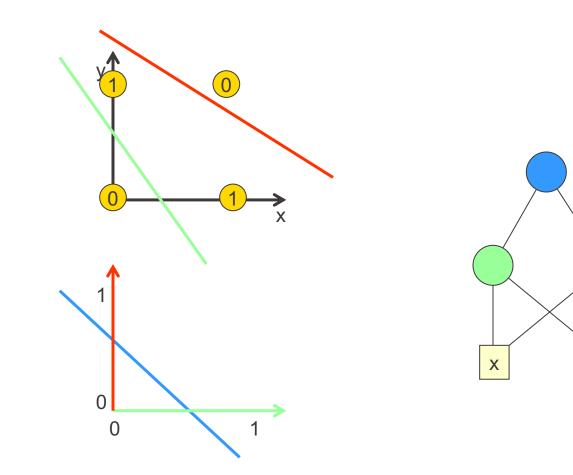


## What can a single Perceptron do?



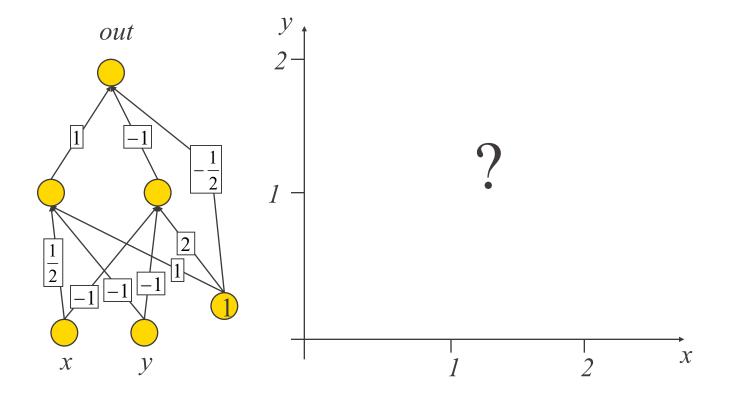


## What can a 3-neuron MLP do?

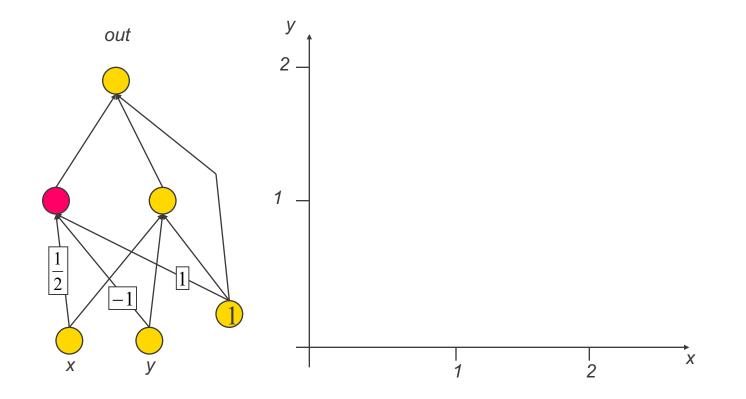


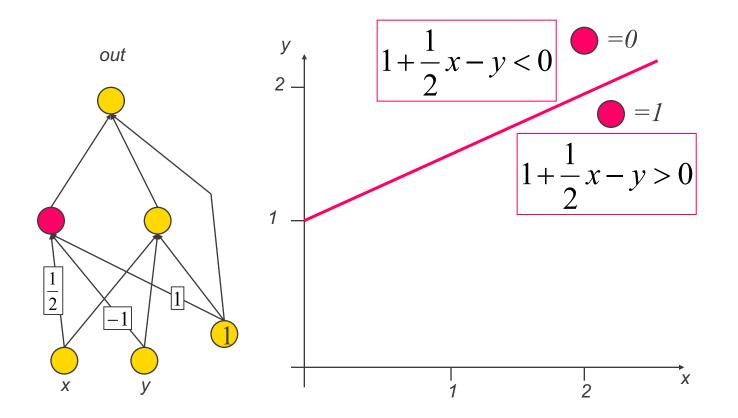
У



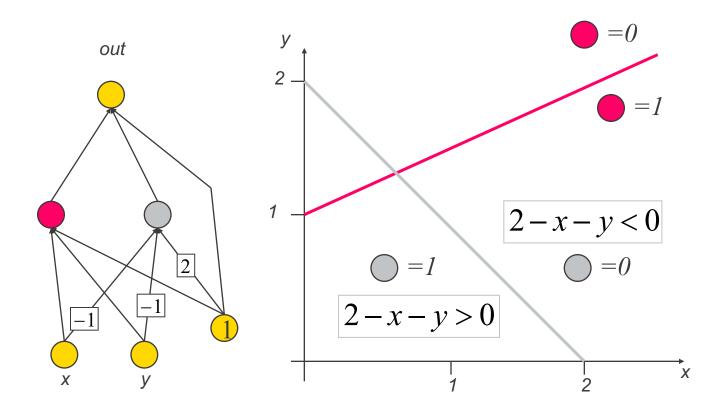




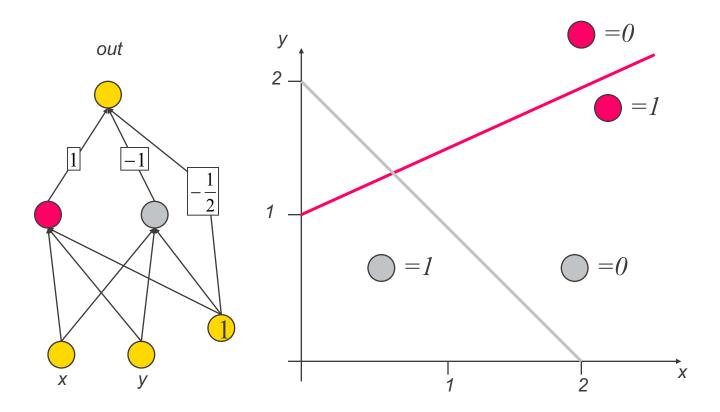




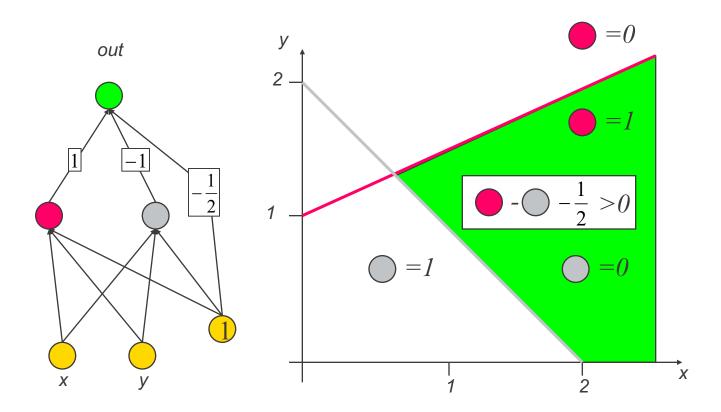




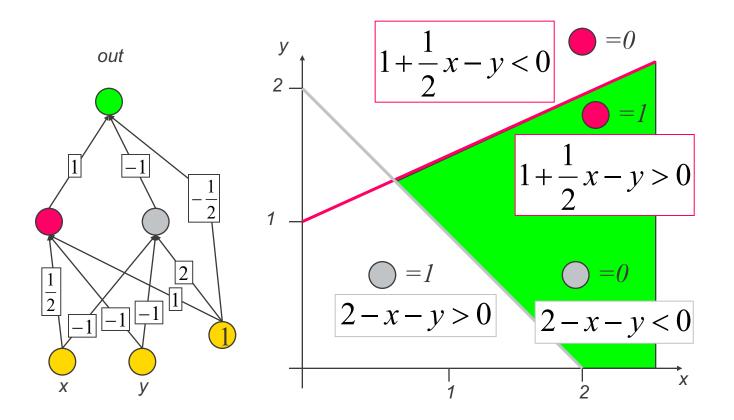






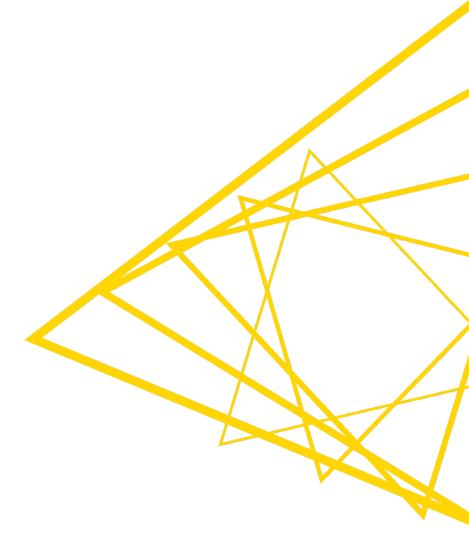








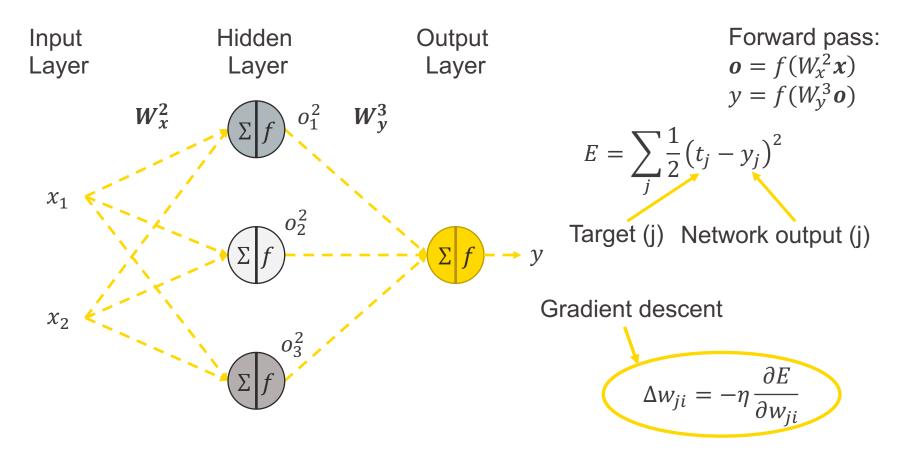
# **Back-Propagation**



## **Training of a Feed Forward Neural Network - MLP**

- Teach (ensemble of) neuron(s) a desired input-output behavior.
- Show examples from the training set repeatedly
- Networks adjusts parameters to fit underlying function
  - topology
  - weights
  - internal functional parameters







#### ... Some Calculations for the Output Layer ....

$$\frac{\partial E}{\partial w_{ji}} = \frac{\partial \left(\frac{1}{2}(t_j - y_j)^2\right)}{\partial w_{ji}} = \frac{\partial \left(\frac{1}{2}(t_j - y_j)^2\right)}{\partial y_j} \frac{\partial y_j}{\partial w_{ji}} = -(t_j - y_j) \frac{\partial y_j}{\partial w_{ji}}$$
$$= -(t_j - y_j) \frac{\partial y_j}{\partial h_j} \frac{\partial h_j}{\partial w_{ji}} = -(t_j - y_j) g'(h_j) \frac{\partial h_j}{\partial w_{ji}} = -(t_j - y_j) g'(h_j) \frac{\partial (\sum_k x_k w_{jk})}{\partial w_{ji}}$$
$$= -(t_j - y_j) g'(h_j) x_i$$

$$\Delta w_{ji} = -\eta (t_j - y_j) g'(h_j) x_i = -\eta \, \delta_j^{out} \, x_i$$





#### ... some Calculations for the Hidden Layer ...

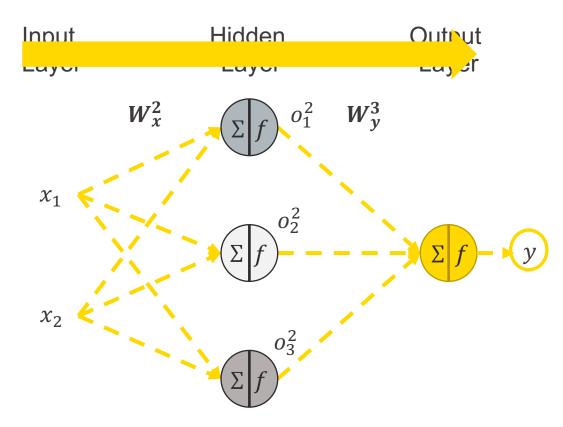
$$\Delta w_{ij}^{hidden} = \frac{\partial \frac{1}{2} \sum_{x \in T} \sum_{k=1}^{c} (f(a_{k}^{out}(x)) - y_{k}(x))^{2}}{\partial w_{ij}^{hidden}} = -\frac{\eta}{2} \sum_{x \in T} \sum_{k=1}^{c} \frac{\partial (f(a_{k}^{out}(x)) - y_{k}(x))^{2}}{\partial w_{ij}^{hidden}}$$

$$\dots = -\frac{\eta}{2} \sum_{x \in T} \sum_{k=1}^{c} 2(f(a_{k}^{out}(x)) - y_{k}(x)) \frac{\partial \left( f\left( \sum_{j'=1}^{h} w_{j'k}^{out} f\left( \sum_{l'=1}^{m} w_{l'j'}^{hidden} \cdot x_{l'} \right) \right) - y_{k}(x) \right)}{\partial w_{ij}^{hidden}}$$

$$\dots = -\eta \sum_{x \in T} \sum_{k=1}^{c} (f(a_{k}^{out}(x)) - y_{k}(x)) f'\left( \sum_{j'=1}^{h} w_{j'k}^{out} f\left( \sum_{i'=1}^{m} w_{l'j'}^{hidden} \cdot x_{i'} \right) \right) \frac{\partial \sum_{j'=1}^{h} w_{j'k}^{out} f(\sum_{l'=1}^{m} w_{l'j'}^{hidden} \cdot x_{l'})}{\partial w_{ij}^{hidden}}$$

$$\dots = -\eta \sum_{x \in T} \sum_{k=1}^{c} \delta_{k}^{out} \frac{\partial \sum_{j'=1}^{h} w_{j'k}^{out} f\left( \sum_{l'=1}^{m} w_{l'j'}^{hidden} \cdot x_{l'} \right)}{\partial w_{ij}^{hidden}} = -\eta \sum_{x \in T} \sum_{k=1}^{c} \delta_{k}^{out} w_{jk}^{out} f'\left( \sum_{i'=1}^{m} w_{l'j'}^{hidden} \cdot x_{i'} \right) + x_{i} = -\eta \sum_{x \in T} \sum_{k=1}^{c} \delta_{k}^{out} w_{jk}^{out} f'\left( \sum_{i'=1}^{m} w_{l'j'}^{hidden} \cdot x_{i'} \right) \cdot x_{i} = -\eta \sum_{x \in T} \sum_{k=1}^{c} \delta_{k}^{out} w_{jk}^{out} f'\left( \sum_{i'=1}^{m} w_{l'j'}^{hidden} \cdot x_{i'} \right) + x_{i} = -\eta \sum_{x \in T} \sum_{k=1}^{c} \delta_{k}^{out} w_{jk}^{out} f'\left( \sum_{i'=1}^{m} w_{l'j}^{hidden} \cdot x_{i'} \right) \cdot x_{i} = -\eta \sum_{x \in T} \sum_{k=1}^{c} \delta_{k}^{out} w_{jk}^{out} f'\left( \sum_{i'=1}^{m} w_{l'j}^{hidden} \cdot x_{i'} \right) \cdot x_{i} = -\eta \sum_{x \in T} \sum_{k=1}^{c} \delta_{k}^{out} w_{jk}^{out} f'\left( \sum_{i'=1}^{m} w_{l'j}^{hidden} \cdot x_{i'} \right) \cdot x_{i} = -\eta \sum_{x \in T} \sum_{k=1}^{c} \delta_{k}^{out} w_{jk}^{out} f'\left( \sum_{i'=1}^{m} w_{i'j}^{hidden} \cdot x_{i'} \right) \cdot x_{i} = -\eta \sum_{x \in T} \sum_{k=1}^{c} \delta_{k}^{out} w_{jk}^{out} f'\left( \sum_{i'=1}^{m} w_{i'j}^{hidden} \cdot x_{i'} \right) \cdot x_{i} = -\eta \sum_{x \in T} \sum_{k=1}^{c} \delta_{k}^{out} w_{jk}^{out} f'\left( \sum_{j'=1}^{m} w_{i'j}^{hidden} \cdot x_{i'} \right) \cdot x_{i} = -\eta \sum_{x \in T} \sum_{k=1}^{c} \delta_{k}^{out} w_{jk}^{out} f'\left( \sum_{j'=1}^{m} w_{i'j}^{hidden} \cdot x_{i'} \right) \sum_{k=1}^{c} \delta_{k}^{out} w_{jk}^{out} f'\left( \sum_{j'=1}^{m} w_{i'j}^{hidden} \cdot x_{i'} \right) \cdot x_{i} = -\eta \sum_{x \in T} \sum_{k=1}^{c} \delta_{k}^{out} w_{jk}^{out} f'\left( \sum_{j'=1}^{m} w_{i'j}^{hidden} \cdot x_{i'} \right) \sum_{k=1}^{c} \delta_{k}$$





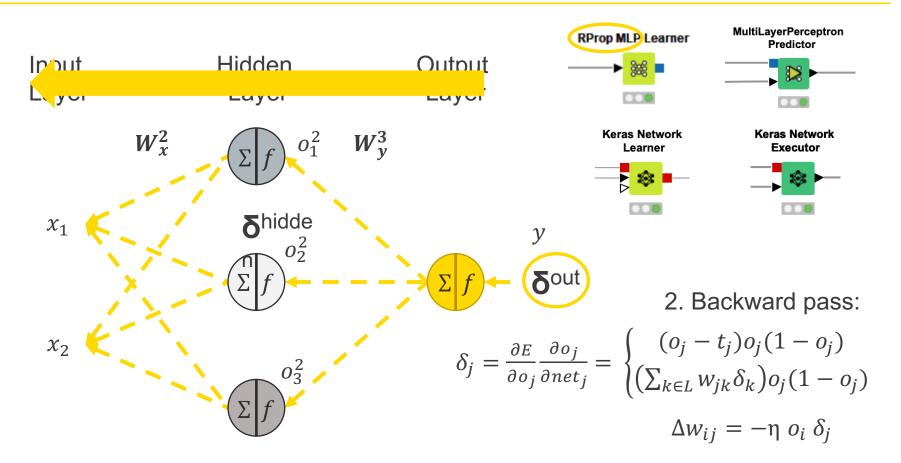
#### 1. Forward pass:

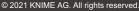
$$\boldsymbol{o} = f(W_x^2 \boldsymbol{x})$$
  
$$\boldsymbol{y} = f(W_y^3 \boldsymbol{o})$$





## **Step 1. Backward Pass**







η too small η too large η just right  $\int_{u_{g}} u_{g} u_{g}$ 



## Training: Batch vs. Online

- Batch Training: Weight update after all patterns
  - correct
  - computationally expensive and slow
  - works with reasonably large learning rates (fewer updates!)
- Online Training: Weight update after each pattern
  - Approximation
    - can (in theory) run into oscillations
  - faster (fewer epochs!)
  - smaller learning rates necessary



## **Back-Propagation: Optimizations**

- Weight Decay:
  - try to keep weights small
- Momentum:
  - increase weight updates as long as they have the same sign
- Resilient Backpropagation:
  - estimate optimum for weight based on assumption that error surface is a polynomial.



# Overfitting

- MLP describe potentially very complex relationships
- Danger of fitting training data too well: Overfitting
  - Modeling of training data instead of underlying concept
    - Modeling of artifacts or outliers

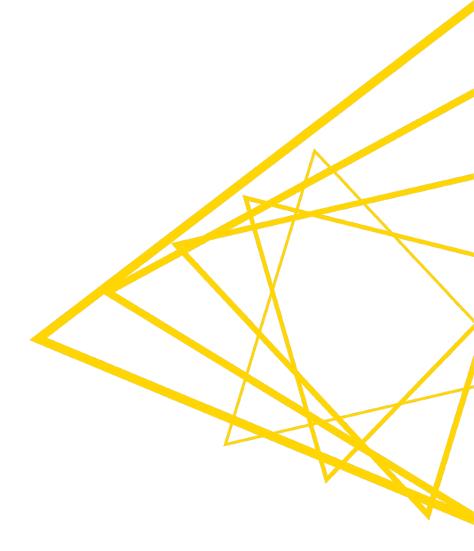


## **Knowledge Extraction and MLPs**

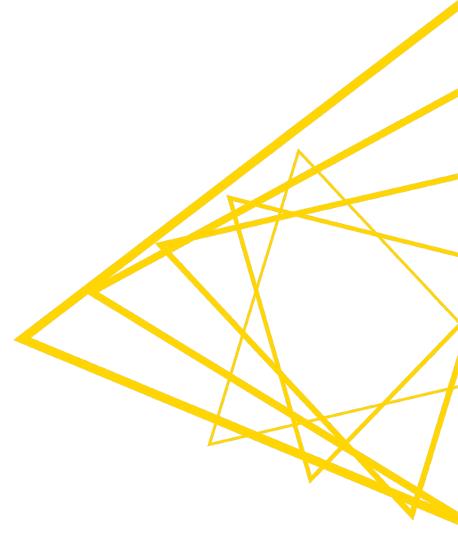
- MLPs are powerful but black boxes
- Rule extraction only possible in some cases
  - VI-Analysis (interval propagation)
  - extraction of decision trees
- Problems:
  - Global influence of each neuron
  - Interpretation of hidden layer(s) complicated
- Possible Solution:
  - Local activity of neurons in hidden layer: Local Basis Function Networks



# **Deep Learning**



## **Recurrent Neural Networks**



## What are Recurrent Neural Networks?

- Recurrent Neural Network (RNN) are a family of neural networks used for processing of sequential data
- RNNs are used for all sorts of tasks:
  - Language modeling / Text generation
  - Text classification
  - Neural machine translation
  - Image captioning
  - Speech to text
  - Numerical time series data, e.g. sensor data



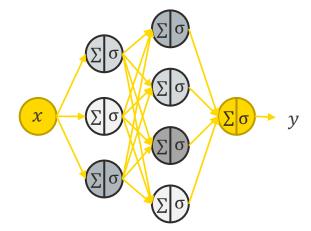
## Why do we need RNNs for Sequential Data?

- Goal: Translation network from German to English

```
"Ich mag Schokolade"
=> "I like chocolate"
```

- One option: Use feed forward network to translate word by word
- But what happens with this question?

"Mag ich Schokolade?" => "Do I like chocolate?"

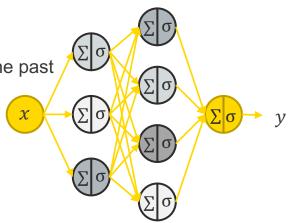






# Why do we need RNNs for Sequential Data?

- Problems:
  - Each time step is completely independent
  - For translations we need context
  - More general: we need a network that remembers inputs from the past
- Solution: Recurrent neural networks







## What are RNNs?

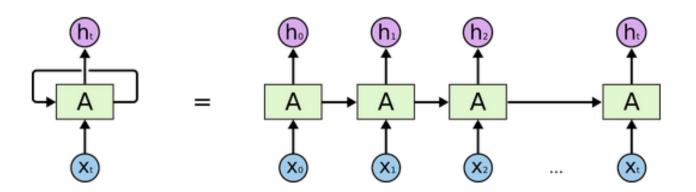
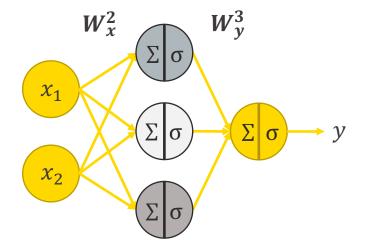


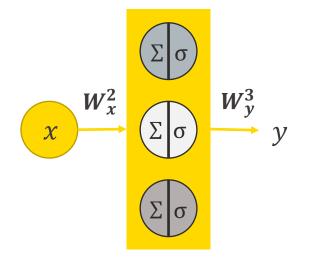
Image Source: Christopher Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/





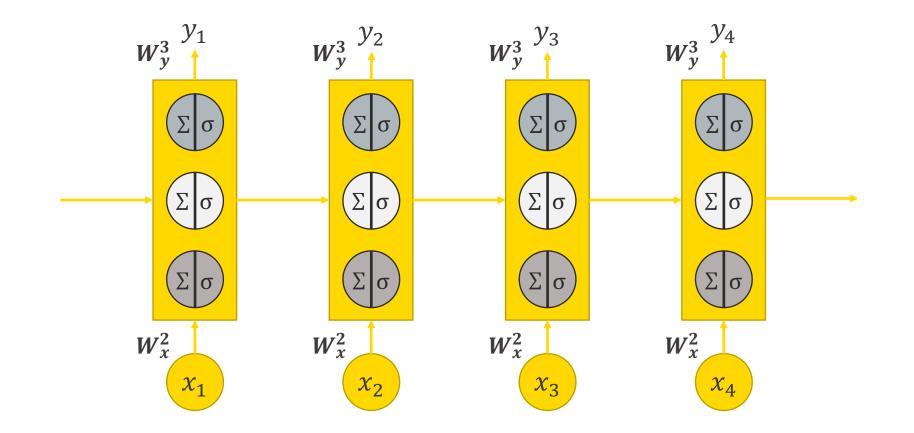
#### From Feed Forward to Recurrent Neural Networks







## **From Feed Forward to Recurrent Neural Networks**





## Simple RNN unit

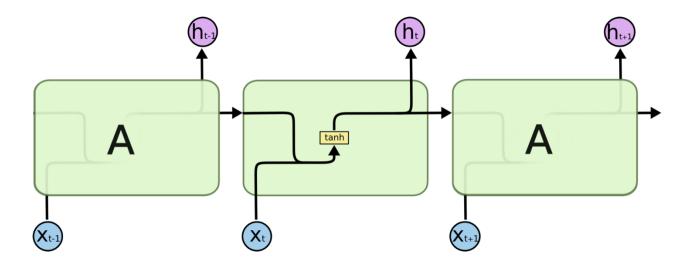


Image Source: Christopher Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/



## Limitations of Simple Layer Structures

The "memory" of simple RNNs is sometimes too limited to be useful

- "Cars drive on the \_\_\_\_" (road)
- "I love the beach my favorite sound is the crashing of the \_\_\_\_\_" (cars? glass? waves?)





## LSTM = Long Short Term Memory Unit

- Special type of unit with three gates
  - Forget gate
  - Input gate

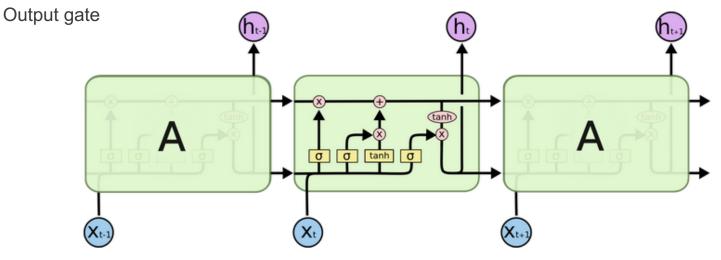
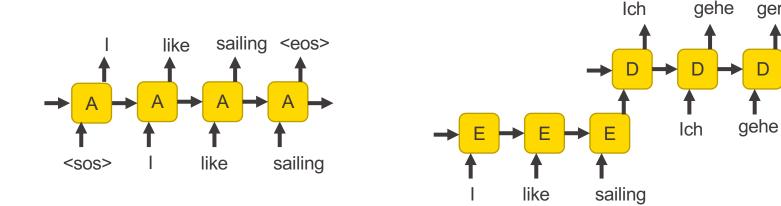


Image Source: Christopher Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/



## **Different Network-Structures and Applications**

Many to Many



Language model

Neural machine translation



gerne

segeln

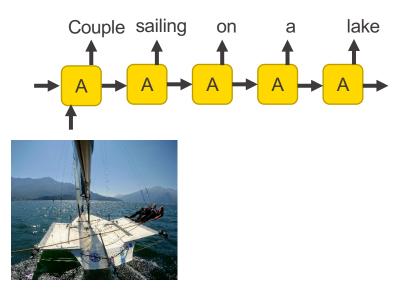
gerne

## **Different Network-Structures and Applications**

English like to sailing go

Many to one

One to many

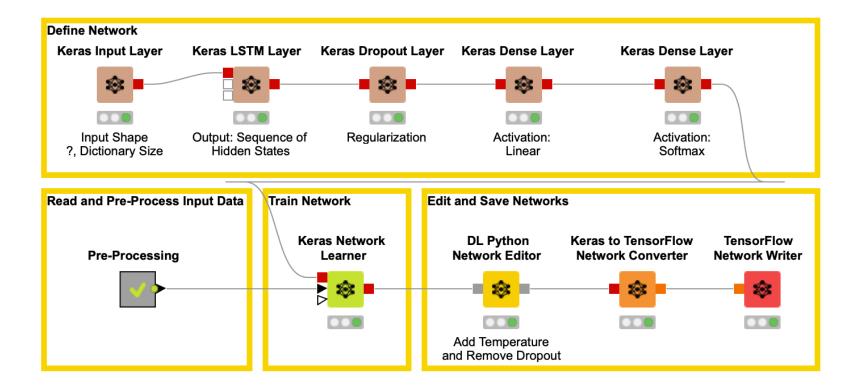


Language classification Text classification

Image captioning



### **Neural Network: Code-free**





## **Convolutional Neural Networks** (CNN)

## **Convolutional Neural Networks (CNN)**

- Used when data has spatial relationships, e.g. images
- Instead of connecting every neuron to the new layer a sliding window is used
- Some convolutions may detect edges or corners, while others may detect cats, dogs, or street signs inside an image

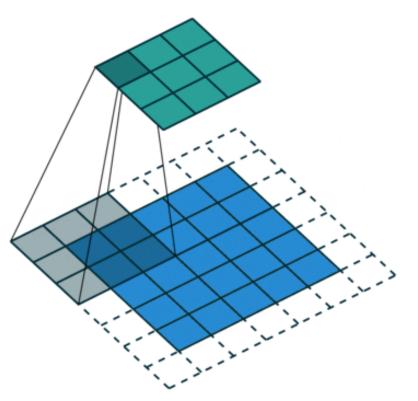
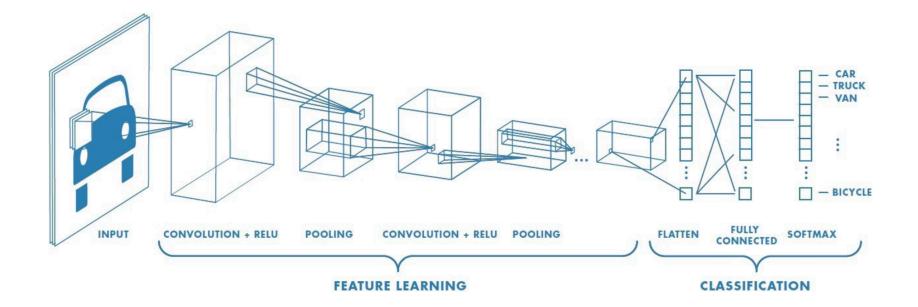


Image from: <u>https://towardsdatascience.com/a-</u> <u>comprehensive-guide-to-convolutional-neural-networks-</u> <u>the-eli5-way-3bd2b1164a53</u>

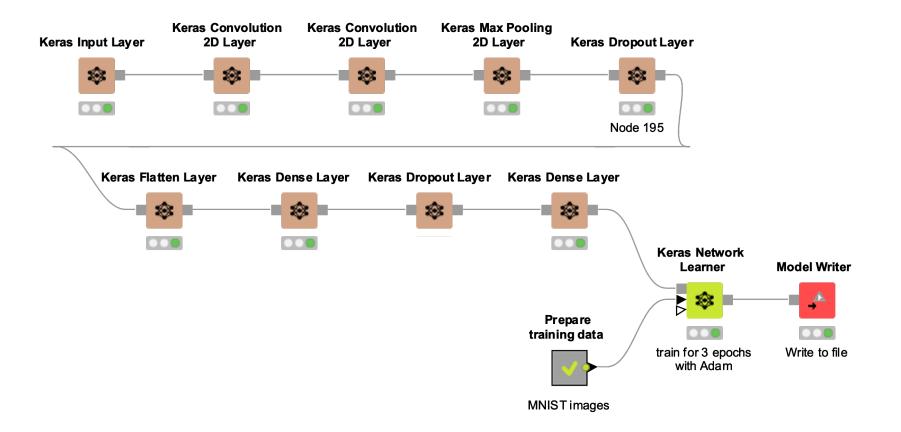


## **Convolutional Neural Networks**



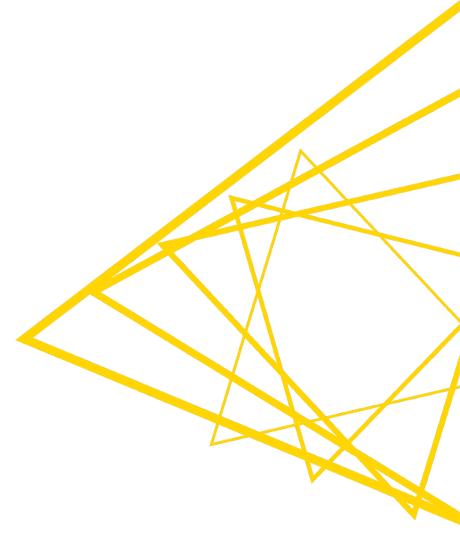


## **Building CNNs with KNIME**

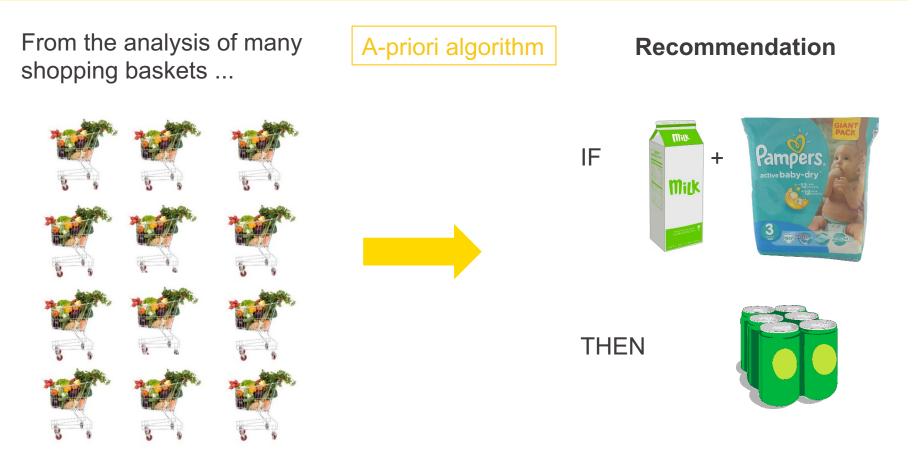




## **Recommendation Engines**



## **Recommendation Engines and Market Basket Analysis**





## **Recommendation Engines or Market Basket Analysis**

## From the analysis of the reactions of many people to the same item ...

#### Recommendation



**IF** *A* has the same opinion as *B* on an item,

**THEN** A is more likely to have B's opinion on another item than that of a randomly chosen person



theory11 Artisan Playing Cards (White) ★★★★☆ 152 \$10.75



theory11 Artisan Playing

Cards (Black)

\$9.60



\$10.70

theory11 High Victorian

Playing Cards

★★★★☆ 15



Cards

\$9.93 **yprime** 





Open for Innovatio

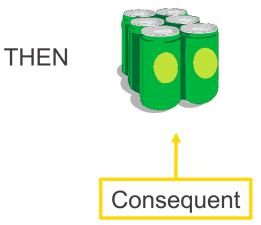
KNIME





## **A-priori Algorithm: the Association Rule**



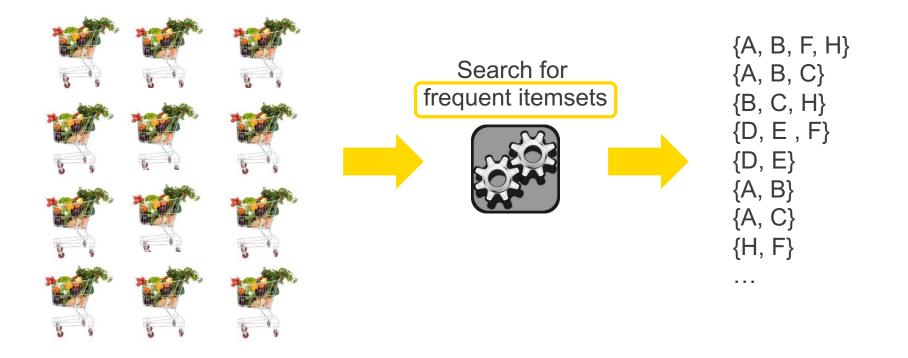




IF

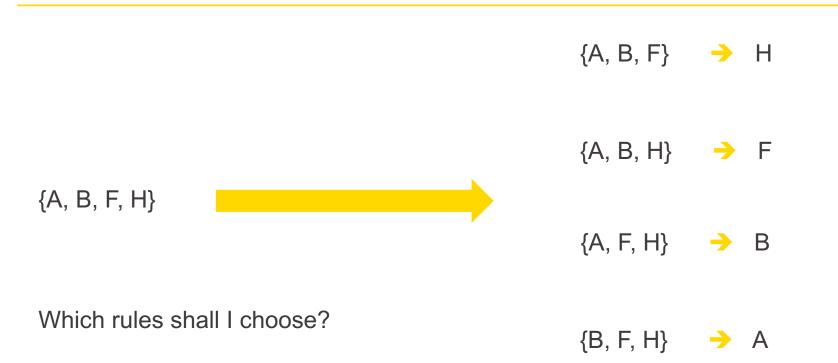
## **Building the Association Rule**

N shopping baskets



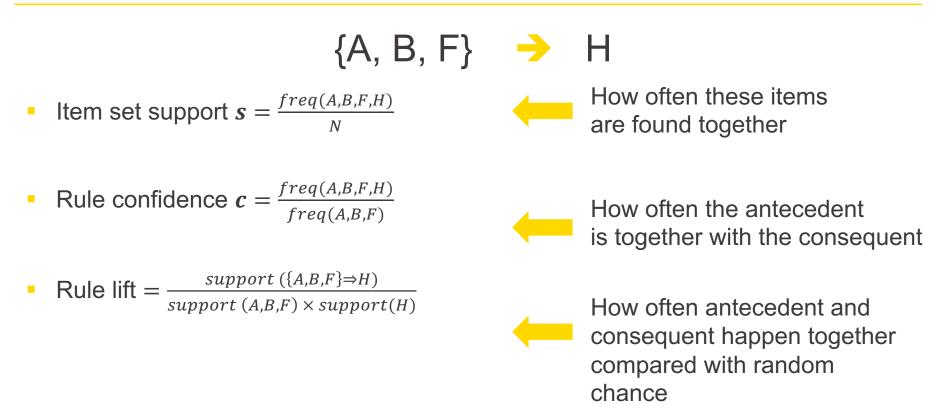


### From "Frequent Itemsets" to "Rules"





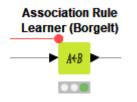
## Support, Confidence, and Lift



The rules with support, confidence and lift above a threshold  $\rightarrow$  most reliable ones



#### **Association Rule Mining (ARM): Two Phases**



Discover all frequent and strong association rules

 $X \Longrightarrow Y \quad \rightarrow \quad \text{``if } X \text{ then } Y''$ 

with sufficient support and confidence

Subset Matcher

Two phases:

1. find all frequent itemsets (FI)

 $\leftarrow$  Most of the complexity

Select itemsets with a minimum support

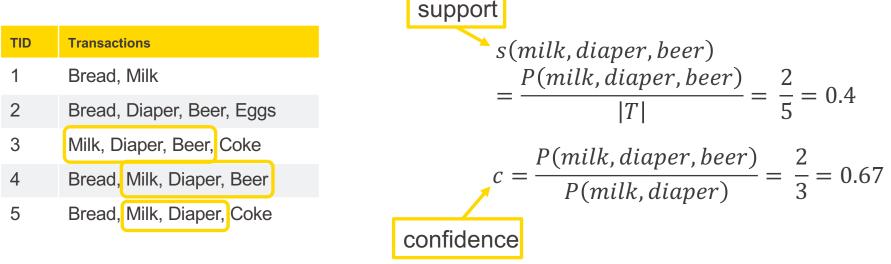
$$FI = \{\{X, Y\}, X, Y \subset I \mid s(X, Y) \geq S_{min}\}$$

- 2. build strong association rules
  - Select rules with a minimum confidence:  $Rules: \{X \Rightarrow Y, X, Y \subset FI, | c(X \Rightarrow Y) \geq C_{min}\}$

User parameters

#### **A-Priori Algorithm: Example**

- Let's consider milk, diaper, and beer:  $\{milk, diaper\} \Rightarrow beer$
- How often are they found together across all shopping baskets?
- How often are they found together across all shopping baskets containing the antecedents?





#### A-priori algorithm: an example

- Let's consider milk, diaper, and beer:  $\{milk, diaper\} \Rightarrow beer$
- How often are they found together across all shooping baskets?
- How often are they found together across all shopping baskets containing the antecedents?



$$s(milk, diaper) = \frac{P(milk, diaper)}{|T|} = \frac{3}{5} = 0.6$$
  

$$s(beer) = \frac{P(beer)}{|T|} = \frac{3}{5} = 0.6$$
  
Rule lift =  $\frac{s(milk, diaper, beer)}{s(milk, diaper) \times s(beer)}$   
=  $\frac{0.4}{0.6 \times 0.6} = 1.11$ 



## **Association Rule Mining: Is it Useful?**

 David J. Hand (2004): "Association Rule Mining is likely the field with the highest ratio of number of published papers per reported application."

#### KNIME Blog post:

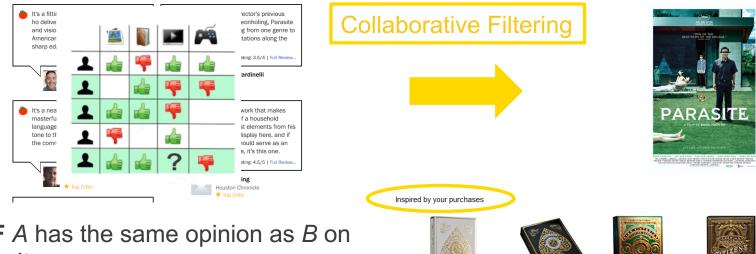
https://www.knime.com/knime-applications/market-basket-analysis-and-recommendation-engines



## **Recommendation Engines or Market Basket Analysis**

#### From the analysis of the reactions of many people to the same item ...

#### Recommendation



<

**IF** A has the same opinion as B on an item,

**THEN** A is more likely to have B's opinion on another item than that of a randomly chosen person



\$10.75



theory11 Artisan Playing Cards (Black) \$9.60

theory11 High Victorian Playing Cards ★★★★☆ 15 \$10.70



theory11 Citizen Playing

\*\*\*\*\*\* 72

\$9.93 **yprime** 



The Poetry and Short Stories of Dorothy. Dorothy Parker Hardcover \$30.46



Cards

## **Collaborative Filtering (CF)**

Collaborative filtering systems have many forms, but many common systems can be reduced to two steps:

- 1. Look for users who share the same rating patterns with the active user (the user whom the recommendation is for)
- 2. Use the ratings from those like-minded users found in step 1 to calculate a prediction for the active user
- 3. Implemented in Spark

© 2021 KNIME AG. All rights reserved



Spark Collaborative



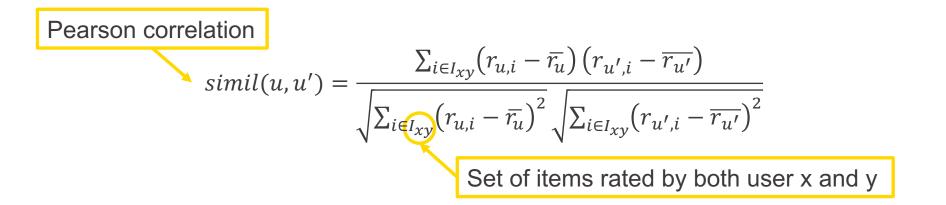
189



## **Collaborative Filtering: Memory based approach**

- User u to give recommendations to
- U = set of top N users most similar to user u
- Rating of user u on item i calculated as average of ratings of all similar users in U:

$$r_{u,i} = \frac{1}{N} \sum_{u' \in U} r_{u',i}$$
 or weighted  $r_{u,i} = \frac{1}{N} \sum_{u' \in U} simil(u,u') r_{u',i}$ 





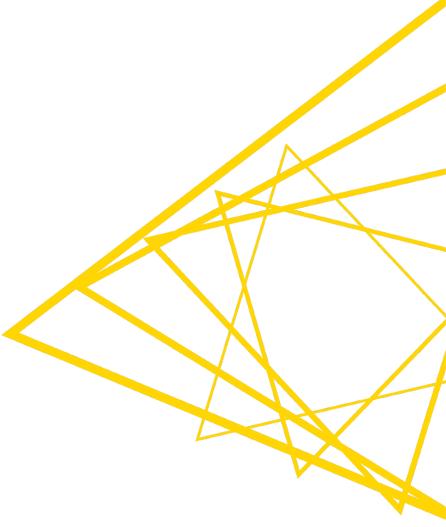
## **Exercises:**

- Neural Network
  - Goal: Train an MLP to solve our classification problem (rank: high/low)
  - 01\_Simple\_Neural\_Network
- Market Basket Analysis
  - 02\_Build\_Association\_Rules\_for\_MarketBasketAnalysis
  - 03\_Apply\_Association\_Rules\_for\_MarketBasketAnalysis

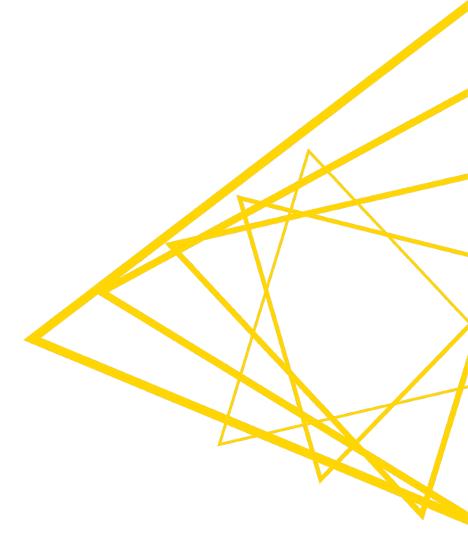
| A KNIME Explorer 🔀                         | - 6                 |
|--------------------------------------------|---------------------|
|                                            |                     |
| ▶ 🚕 My-KNIME-Hub (hub.knime.com)           |                     |
| A EXAMPLES (knime@hub.knime.com)           |                     |
| 🔻 📥 LOCAL (Local Workspace)                |                     |
| Example Workflows                          |                     |
| L4_ML_Intro_to_Machine_Learning_Alg        | jorithms            |
| Session_1                                  |                     |
| ▶ 📩 Session_2                              |                     |
| ▼ Session_3                                |                     |
| O1_Exercises                               |                     |
| 01_Simple_Neural_Network                   |                     |
| ▲ 02_Build_Association_Rules_1             |                     |
| 🛆 03_Apply_Association_Rules_              | for_MarketBasketAna |
| 02_Solution                                |                     |
| ▲ 01_Simple_Neural_Network_s               |                     |
| 02_Apply_Association_Rules_                |                     |
| O2_Build_Association_Rules_1     Session 4 | for_MarketBasketAna |



# Session 4: Clustering & Data Preparation



## Unsupervised Learning: Clustering



## **Goal of Cluster Analysis**

Discover hidden structures in unlabeled data (unsupervised)

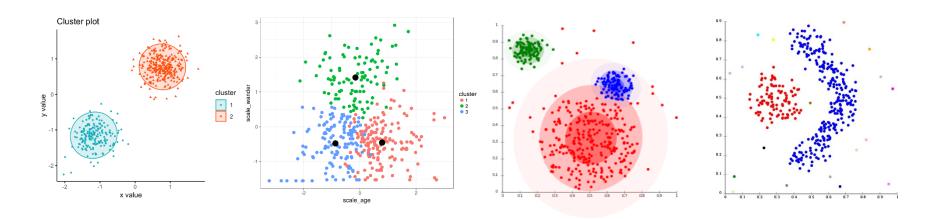
**Clustering** identifies a finite set of groups (*clusters*)  $C_1, C_2 \cdots, C_k$  in the dataset such that:

- Objects within the same cluster C<sub>i</sub> shall be as similar as possible
- Objects of *different* clusters  $C_i$ ,  $C_j$  ( $i \neq j$ ) shall be as dissimilar as possible



## **Cluster Properties**

- Clusters may have different sizes, shapes, densities
- Clusters may form a hierarchy
- Clusters may be overlapping or disjoint





## **Clustering Applications**

- Find "natural" clusters and desc
  - Data understanding
- Find useful and suitable groups
  - Data Class Identification
- Find representatives for homogenous groups
  - Data Reduction
- Find unusual data objects
  - Outlier Detection
- Find random perturbations of the data
  - Noise Detection

#### **Methods**

- K-means
- Hierarchical
- DBScan

#### **Examples**

- Customer segmentation
- Molecule search
- Anomaly detection

## **Clustering as Optimization Problem**

#### **Definition:**

Given a data set D, |D| = n. Determine a *clustering* C of D with:

$$C = \{C_1, C_2, \cdots, C_k\}$$
 wher  $C_i \subseteq D$  and  $C_i = C_i$ 

that best fits the given data set D.

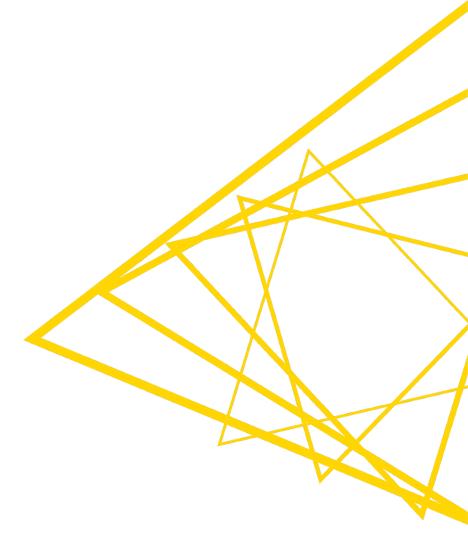
#### **Clustering Methods:**

- partitioning 1.
- hierarchical (linkage based) 2.
- density-based 3.

wher 
$$C_i \subseteq D$$
 and  $\bigcup_{1 \le i \le k} C_i = D$   
e Inside the space Cover the whole space



## Clustering: Partitioning k-Means

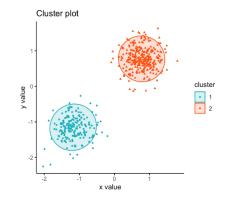


## Partitioning

#### Goal:

A (disjoint) partitioning into k clusters with minimal costs

- Local optimization method:
  - choose k initial cluster representatives
  - optimize these representatives iteratively
  - assign each object to its most similar cluster representative
- Types of cluster representatives:
  - Mean of a cluster (construction of central points)
  - Median of a cluster (selection of representative points)
  - Probability density function of a cluster (*expectation maximization*)



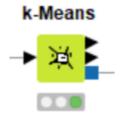
199



## k-Means-Algorithm

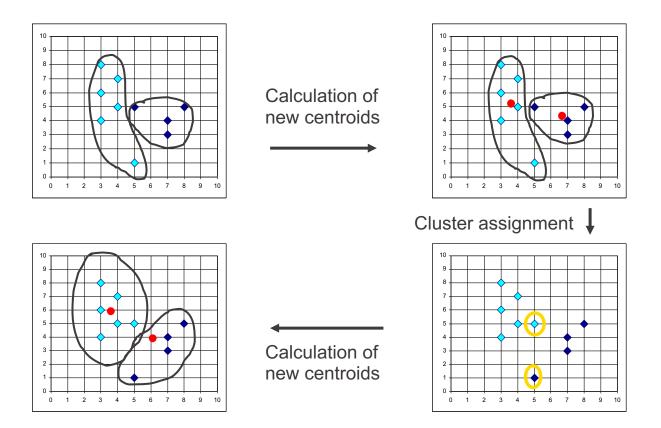
Given k, the k-Means algorithm is implemented in four steps:

- 1. Partition objects into *k* non-empty subsets, calculate their **centroids** (i.e., **mean point**, of the cluster)
- 2. Assign each object to the cluster with the **nearest** centroid Euclidean distance
- 3. Compute the centroids from the current partition
- 4. Go back to Step 2, repeat until the updated centroids stop moving significantly





## k-Means Algorithm





## **Comments of the k-Means Method**

- Advantages:
  - Relatively efficient
  - Simple implementation

#### Weaknesses:

- Often terminates at a local optimum
- Applicable only when mean is defined (what about categorical data?)
- Need to specify k, the number of clusters, in advance
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with non-convex shapes

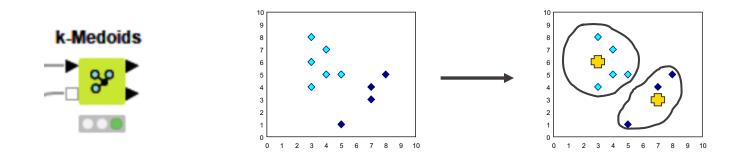


#### **Problem with K-Means**

An object with an extremely large value can substantially distort the distribution of the data.

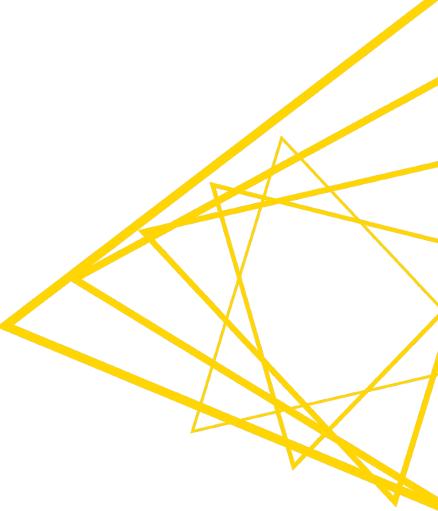
#### **One solution: K-Medoids**

Instead of taking the **mean** value of the objects in a cluster as a reference point, **medoids** can be used, which are the most centrally located objects in a cluster.

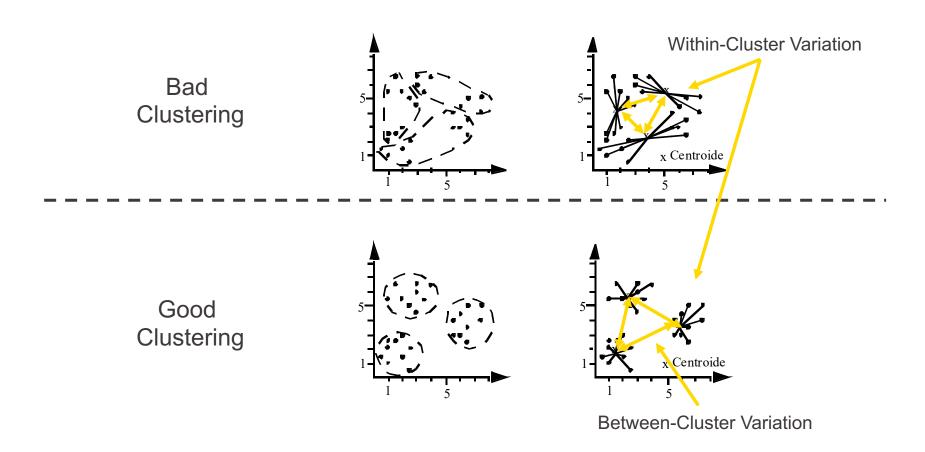




## **Clustering: Quality Measures Silhouette**



## **Optimal Clustering: Example**







### **Cluster Quality Measures**

Centroid  $\mu_C$ : mean vector of all objects in clustering C

• Within-Cluster Variation:

$$TD^{2} = \sum_{i=1}^{k} \sum_{p \in C_{i}} dist(p, \mu_{C_{i}})^{2}$$

Between-Cluster Variation:

$$BC^{2} = \sum_{j=1}^{k} \sum_{i=1}^{k} dist(\mu_{C_{j}}, \mu_{C_{i}})^{2}$$

CQ

Clustering Quality (one possible measure):



#### Silhouette-Coefficient for object *x*

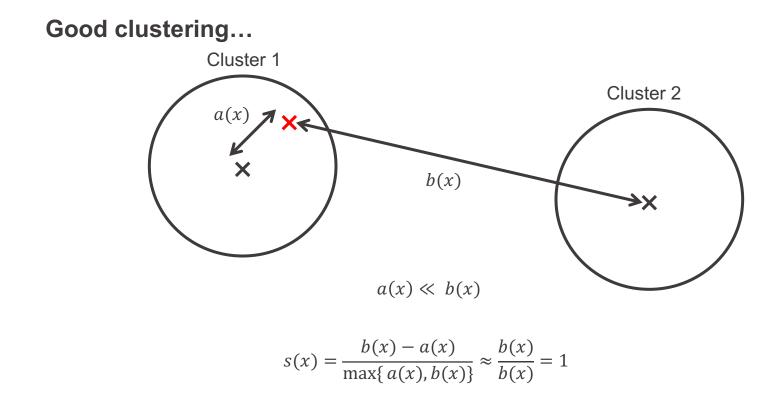
Silhouette-Coefficient [Kaufman & Rousseeuw 1990] measures the quality of clustering

- a(x): distance of object x to its cluster representative
- b(x): distance of object x to the representative of the "second-best" cluster
- Silhouette *s*(*x*) of *x*

$$s(x) = \frac{b(x) - a(x)}{\max\{a(x), b(x)\}}$$

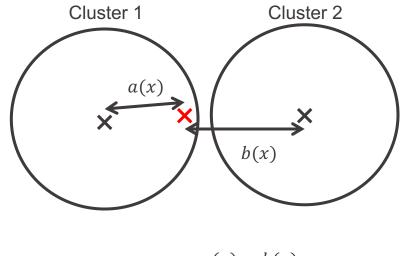


#### Silhouette-Coefficient





...not so good...

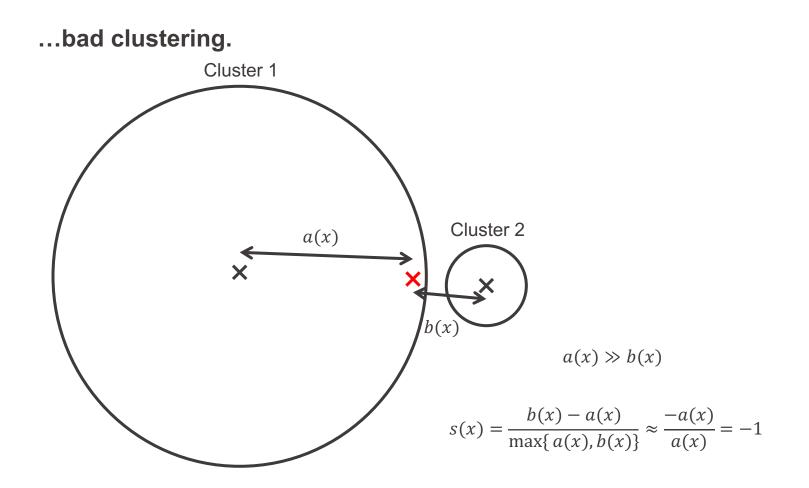


 $a(x)\approx b(x)$ 

$$s(x) = \frac{b(x) - a(x)}{\max\{a(x), b(x)\}} \approx \frac{0}{b(x)} = 0$$



#### Silhouette-Coefficient





#### Silhouette-Coefficient for Clustering C

Silhouette coefficient  $s_c$  for clustering C is the average silhouette over all objects  $x \in C$ 

$$s_c = \frac{1}{n} \sum_{x \in C} s(x)$$

- Interpretation of silhouette coefficient:
  - $s_c > 0.7$  : strong cluster structure,
  - $s_c > 0.5$  : reasonable cluster structure,

. . . .



Method

- For  $k=2, 3, \dots, n-1$ , determine one clustering each
- Choose k resulting in the highest clustering quality

Measure of clustering quality

- Uncorrelated with k
- for k-means and k-medoid:

 $TD^2$  and TD decrease monotonically with increasing k



# **Summary: Clustering by Partitioning**

- Scheme always similar:
  - Find (random) starting clusters
  - Iteratively improve cluster positions (compute new mean, swap medoids, compute new distribution parameters,...)
- Important:
  - Number of clusters k
  - Initial cluster position influences (heavily):
    - quality of results
    - speed of convergence
- Problems for iterative clustering methods:
  - Clusters of varied size, density and shape



# **Clustering: Distance Functions**

### **Distance Functions for Numeric Attributes**

For two objects  $x = (x_1, x_2, \dots, x_d)$  and  $y = (y_1, y_2, \dots, y_d)$ :

- $L_p$ -Metric (Minkowski-Distance)  $dist(x, y) = \sqrt[p]{\sum_{i=1}^d |x_i - y_i|^p}$

$$dist(x, y) = \sum_{i=1}^{d} |x_i - y_i|$$

Maximum-Distance 
$$(p = \infty)$$

$$dist(x, y) = \max_{1 \le i \le d} \{|x_i - y_i|\}$$



# **Influence of Distance Function / Similarity**

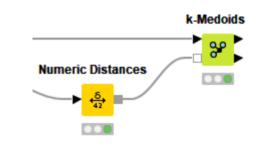
- Clustering vehicles:
  - red Ferrari
  - green Porsche







- Distance Function based on maximum speed (numeric distance function):
  - Cluster 1: Ferrari & Porsche
  - Cluster 2: Bobby car
- Distance Function based on color (nominal attributes):
  - Cluster 1: Ferrari and Bobby car
  - Cluster 2: Porsche



The distance function affects the shape of the

clusters

A Bit Vector Distances

Addition Matrix Distance

Java Distance

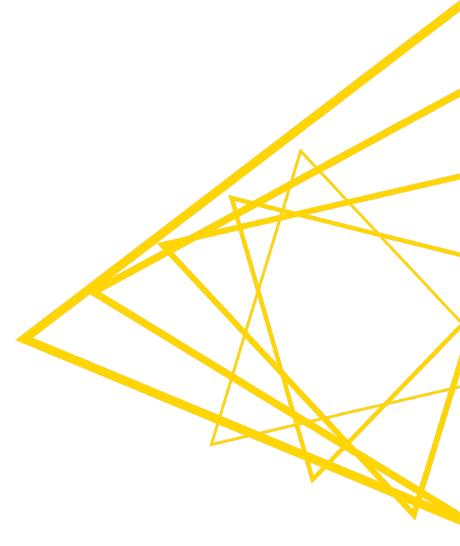
♣ Byte Vector Distances
 ♣ Mahalanobis Distance

2+8 Aggregated Distance

↔ Distance Calculation
 < <sup>δ</sup>/<sub>43</sub> Distance Functions



# Clustering: Linkage Hierarchical Clustering



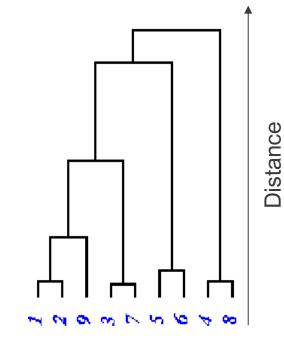
## Linkage Hierarchies: Basics

#### Goal

Construction of a hierarchy of clusters (*dendrogram*)
 by merging/separating clusters with minimum/maximum distance

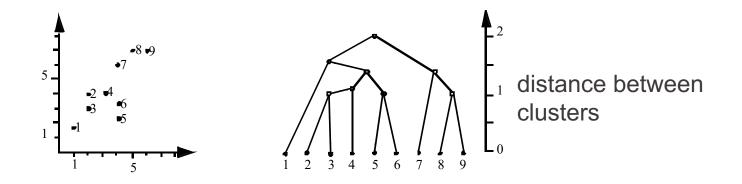
#### Dendrogram:

- A tree representing hierarchy of clusters, with the following properties:
  - Root: single cluster with the whole data set.
  - Leaves: clusters containing a single object.
  - Branches: merges / separations between larger clusters and smaller clusters / objects



# Linkage Hierarchies: Basics

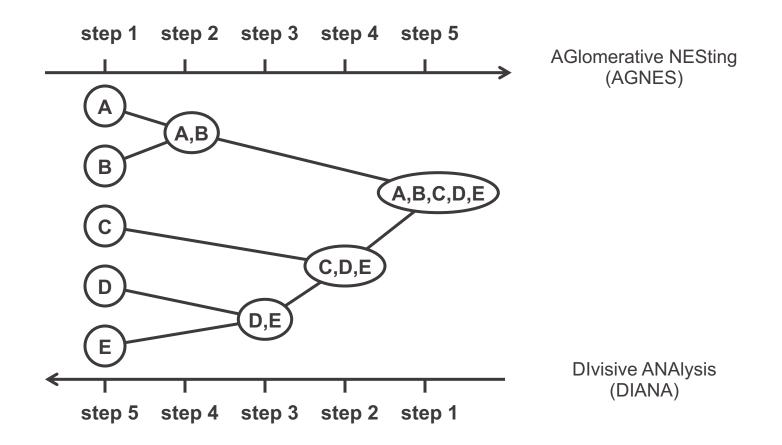
Example dendrogram



- Types of hierarchical methods
  - Bottom-up construction of dendrogram (agglomerative)
  - Top-down construction of dendrogram (*divisive*)



#### **Agglomerative vs. Divisive Hierarchical Clustering**





## **Base Algorithm**

- 1. Form initial clusters consisting of a single object, and compute the distance between each pair of clusters.
- 2. Merge the two clusters having minimum distance.
- 3. Calculate the distance between the new cluster and all other clusters.
- 4. If there is only one cluster containing all objects: Stop, otherwise go to step 2.



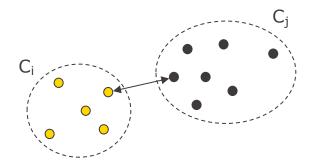
## Single Linkage

Distance between clusters (nodes):

$$Dist(C_1, C_2) = \min_{p \in C_1, q \in C_2} \{dist(p, q)\}$$

Distance of the closest two points, one from each cluster

Merge Step: Union of two subsets of data points





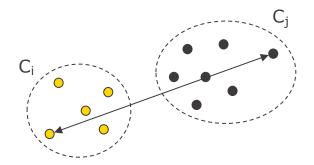
#### **Complete Linkage**

Distance between clusters (nodes):

$$Dist(C_1, C_2) = \max_{p \in C_1, q \in C_2} \{dist(p, q)\}$$

Distance of the farthest two points, one from each cluster

Merge Step: Union of two subsets of data points





#### **Average Linkage / Centroid Method**

Distance between clusters (nodes):

$$Dist_{avg}(C_1, C_2) = \frac{1}{|C_1| \cdot |C_2|} \sum_{p \in C_1} \sum_{p \in C_2} dist(p, q)$$

Average distance of all possible pairs of points between  $C_1$  and  $C_2$ 

$$Dist_{mean}(C_1, C_2) = dist(mean(C_1), mean(C_2))$$

Distance between two centroids

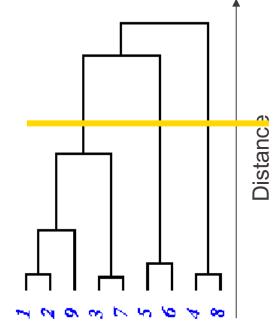
- Merge Step:
  - union of two subsets of data points
  - construct the mean point of the two clusters



# **Comments on Single Linkage and Variants**

- + Finds not only a "flat" clustering, but a hierarchy of clusters (dendrogram)
- + A single clustering can be obtained from the dendrogram (e.g., by performing a horizontal cut)

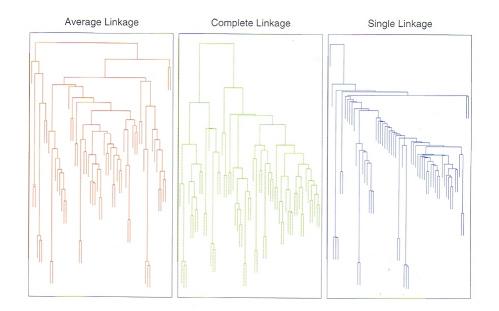
- Decisions (merges/splits) cannot be undone
- Sensitive to noise (Single-Link)
   (a "line" of objects can connect two clusters)
- Inefficient
  - → Runtime complexity at least  $O(n^2)$  for *n* objects





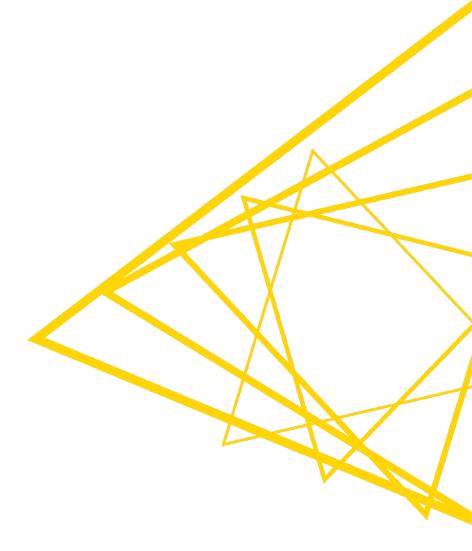
# Linkage Based Clustering

- Single Linkage:
  - Prefers well-separated clusters
- Complete Linkage:
  - Prefers small, compact clusters
- Average Linkage:
  - Prefers small, well-separated clusters...





# Clustering: Density DBSCAN



DBSCAN - a density-based clustering algorithm - defines five types of points in a dataset.

- Core Points are points that have at least a minimum number of neighbors (MinPts) within a specified distance (ε).
- Noise Points are neither core points nor border points.
- Border Points are points that are within  $\varepsilon$  of a core point, but have less than MinPts neighbors.
- **Directly Density Reachable Points** are within  $\varepsilon$  of a core point.
- Density Reachable Points are reachable with a chain of Directly Density Reachable points.

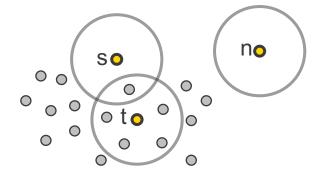
Clusters are built by joining core and density-reachable points to one another.





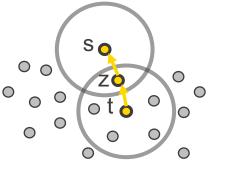
## **Example with MinPts = 3**

Core Point vs. Border Point vs. Noise



- t = Core point
- s = Boarder point
- n = Noise point

Directly Density Reachable vs. Density Reachable



- z is directly density reachable from t
- s is not directly density reachable from t, but density reachable via z

Note: But t is not density reachable from s, because s is not a Core point



#### **DBSCAN** [Density Based Spatial Clustering of Applications with Noise]

- For each point, DBSCAN determines the *ε*-environment and checks whether it contains more than *MinPts* data points → core point
- Iteratively increases the cluster by adding density-reachable points





Clustering:

- A density-based clustering C of a dataset D w.r.t.  $\varepsilon$  and MinPts is the set of all density-based clusters  $C_i$  w.r.t.  $\varepsilon$  and MinPts in D.
- The set *NoiseCL* ("noise") is defined as the set of all objects in D which do not belong to any of the clusters.

Property:

Let  $C_i$  be a density-based cluster and  $p \in C_i$  be a core object.

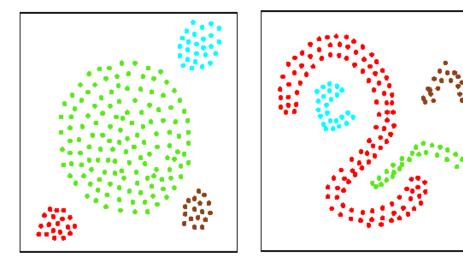
 $C_i = \{o \in D \mid o \text{ density-reachable from } p \text{ w.r.t. } \varepsilon \text{ and } MinPts\}.$ 

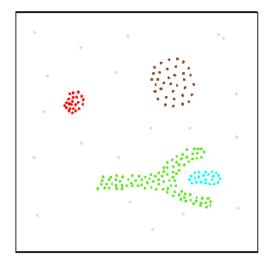


#### **DBSCAN** [Density Based Spatial Clustering of Applications with Noise]

- DBSCAN uses (spatial) index structures for determining the ε-environment:
   → computational complexity *O*(*n* log *n*) instead of *O*(*n*<sup>2</sup>)
- Arbitrary shape clusters found by DBSCAN
- Parameters: ε and MinPts

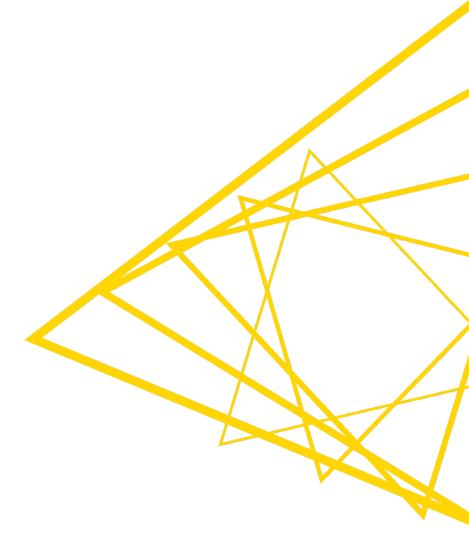








# **Data Preparation**



## **Motivation**

#### Real world data is "dirty"

→ Contains missing values, noises, outliers, inconsistencies

#### Comes from different information sources

→ Different attribute names, values expressed differently, related tuples

#### Different value ranges and hierarchies

 $\rightarrow$  One attribute range may overpower another

#### Huge amount of data

 $\rightarrow$  Makes analyis difficult and time consuming



## **Data Preparation**

- Data Cleaning & Standardization (domain dependent)
- Aggregations (often domain dependent)
- Normalization
- Dimensionality Reduction
- Outlier Detection
- Missing Value Imputation
- Feature Selection
- Feature Engineering
- Sampling
- Integration of multiple Data Sources



# **Data Preparation: Normalization**

Example:

- Lengths in cm (100 200) and weights in kilogram (30 150) fall both in approximately the same scale
- What about lengths in m (1-2) and weights also in gram (30000 150000)?
   The weight values in mg dominate over the length values for the similarity of records!

Goal of normalization:

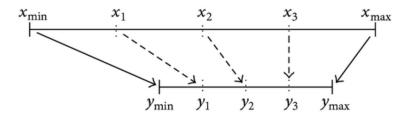
Transformation of attributes to make record ranges comparable



# **Normalization: Techniques**

min-max normalization

$$y = \frac{x - x_{min}}{x_{max} - x_{min}} (y_{max} - y_{min}) + y_{min}$$



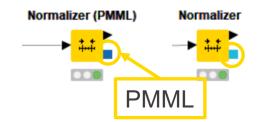
z-score normalization

$$y = \frac{x - mean(x)}{stddev(x)}$$

normalization by decimal scaling

$$y = \frac{x}{10^{j}}$$
 where j is the smallest integer for max(y) < 1  
Here [ymin, ymax] is [0,1]







#### **PMML**

- Predictive Model Mark-up Language (PMML) standard XML-based interchange format for predictive models.
- Interchange. PMML provides a way to describe and exchange predictive models produced by machine learning algorithms
- Standard. In theory, a PMML model exported from KNIME can be read by PMML compatible functions in other tools
- It does not work that well for the modern / ensemble algorithms, such as random forest or deep learning. In this case, other formats have been experimented.



# Data Preparation: Missing Value Imputation

#### **Missing Value Imputation: Motivation**

Data is not always available

 E.g., many tuples have no recorded value for several attributes, such as weight in a people database

Missing data may be due to

- Equipment malfunctioning
- Inconsistency with other recorded data and thus deleted
- Data not entered (manually)
- Data not considered important at the time of collection
- Data format / contents of database changes



Types of missing values:

Example: Suppose you are modeling weight Y as a function of sex X

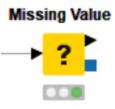
- Missing Completely At Random (MCAR): reason does not depend on its value or lack of value. There may be no particular reason why some people told you their weights and others didn't.
- Missing At Random (MAR): the probability that Y is missing depends only on the value of X.
   One sex X may be less likely to disclose its weight Y.
- Not Missing At Random (NMAR): the probability that Y is missing depends on the unobserved value of Y itself. Heavy (or light) people may be less likely to disclose their weight.



#### **Missing Values Imputation**

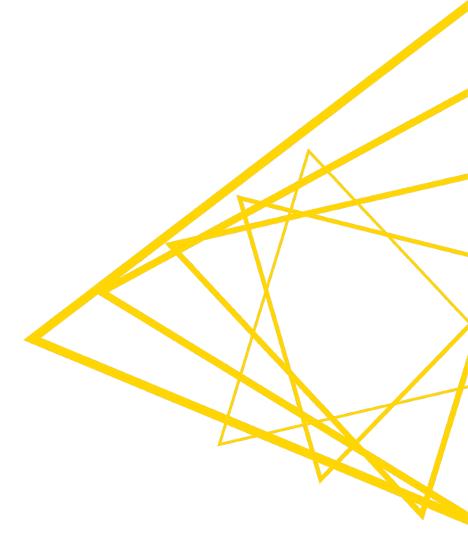
How to handle missing values?

- Ignore the record
- Remove the record
- Fill in missing value as:
  - Fixed value: e.g., "unknown", -9999, etc.
  - Attribute mean / median / max. / min.
  - Attribute most frequent value
  - Next / previous /avg interpolation / moving avg value (in time series)
  - A predicted value based on the other attributes (inference-based such as Bayesian, Decision Tree, ...)



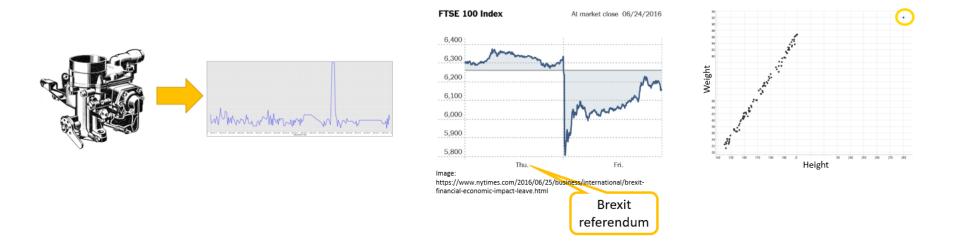


### Data Preparation: Outlier Detection



#### **Outlier Detection**

An outlier could be, for example, rare behavior, system defect, measurement error, or reaction to an unexpected event



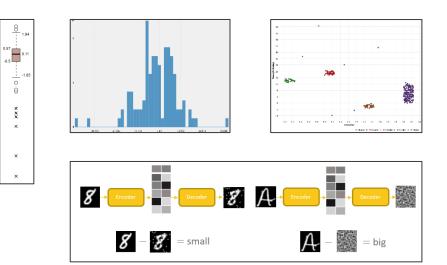


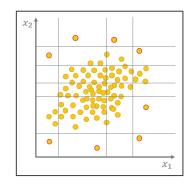
#### **Outlier Detection: Motivation**

- Why finding outliers is important?
  - Summarize data by statistics that represent the majority of the data
  - Train a model that generalizes to new data
  - Finding the outliers can also be the focus of the analysis and not only data cleaning

### **Outlier Detection Techniques**

- Knowledge-based
- Statistics-based
  - Distance from the median
  - Position in the distribution tails
  - Distance to the closest cluster center
  - Error produced by an autoencoder
  - Number of random splits to isolate a data point from other data







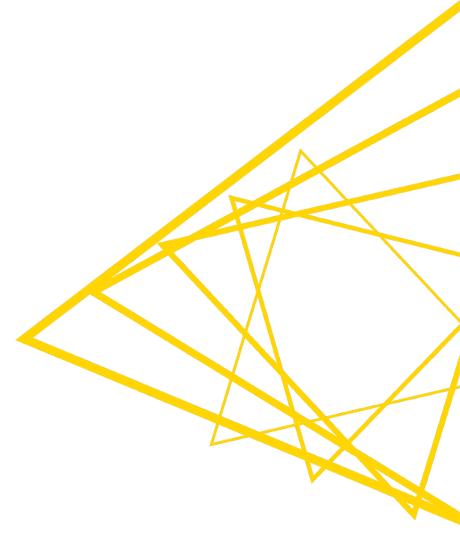
#### **Material**

| Open for Innovation       | Hub Blog Forum Events Careers Contact Download Q                                                                                                                                                                                                            |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KNIME                     | SOFTWARE / SOLUTIONS / LEARNING / PARTNERS / COMMUNITY / ABOUT                                                                                                                                                                                              |
| Home > About > Blog       |                                                                                                                                                                                                                                                             |
| / News                    | Four Techniques for Outlier Detection                                                                                                                                                                                                                       |
| / Blog                    |                                                                                                                                                                                                                                                             |
| / Team                    | Mon, 10/01/2018 - 10:00 — admin                                                                                                                                                                                                                             |
| / Careers                 | Authors: Maarit Widmann and Moritz Heine                                                                                                                                                                                                                    |
| / Contact Us              | Ever been skewed by the presence of outliers in your set of data? Anomalies, or outliers, can be a                                                                                                                                                          |
| / Travel Information      | serious issue when training machine learning algorithms or applying statistical techniques. They                                                                                                                                                            |
| / KNIME Open Source Story | are often the result of errors in measurements or exceptional system conditions and therefore do<br>not describe the common functioning of the underlying system. Indeed, the best practice is to                                                           |
| / Open for Innovation     | implement an outlier removal phase before proceeding with further analysis.                                                                                                                                                                                 |
|                           | But hold on there! In some cases, outliers can give us information about localized anomalies in the whole system; so the detection of outliers is a valuable process because of the additional information they can provide about your dataset.             |
|                           | There are many techniques to detect and optionally remove outliers from a dataset. In this blog post, we show an implementation in KNIME Analytics Platform of four of the most frequently used - traditional and novel - techniques for outlier detection. |

#### https://www.knime.com/blog/four-techniques-for-outlier-detection



#### Data Preparation: Dimensionality Reduction



#### Is there such a thing as "too much data"?

"Too much data":

- Consumes storage space
- Eats up processing time
- Is difficult to visualize
- Inhibits ML algorithm performance
- Beware of the model: Garbage in  $\rightarrow$  Garbage out



#### **Dimensionality Reduction Techniques**

- Measure based
  - Ratio of missing values
  - Low variance
  - High Correlation
- Transformation based
  - Principal Component Analysis (PCA)
  - Linear Discriminant Analysis (LDA)
  - t-SNE
- Machine Learning based
  - Random Forest of shallow trees
  - Neural auto-encoder

#### **Missing Values Ratio**

|        | Rows: 40000 9 | Spec - Columns: | 231 Propertie | s Flow Variable | es      |       |       |       |       |       |       |        |            |    |
|--------|---------------|-----------------|---------------|-----------------|---------|-------|-------|-------|-------|-------|-------|--------|------------|----|
| Row ID | D Var 16      | Var 17          | Var 18        | Var 19          | S Var20 | Var21 | Var22 | Var23 | Var24 | Var25 | Var26 | Var27  | D Var28    | T  |
| Row0   | 2             | ?               | ?             | ?               | 2       | 464   | 580   | ?     | 14    | 128   | ?     | ?      | 166.56     | ۰. |
| Row1   | 2             | ?               | ?             | ?               | ?       | 168   | 210   | ?     | 2     | 24    | ?     | ?      | 353.52     | 1  |
| Row2   | ?             | ?               | ?             | ?               | ?       | 1212  | 1515  | ?     | 26    | 816   | ?     | ?      | 220.08     |    |
| Row4   | ?             | ?               | ?             | ?               | ?       | 64    | 80    | ?     | 4     | 64    | ?     | ?      | 200        | 1  |
| Row7   | ?             | ?               | ?             | ?               | ?       | 32    | 40    | ?     | 2     | 16    | ?     | ?      | 230.56     | 1  |
| Row8   | ?             | ?               | ?             | ?               | ?       | 200   | 250   | ?     | 2     | 64    | ?     | ?      | 300.32     | 1  |
| Row10  | ?             | ?               | ?             | ?               | ?       | 92    | 115   | ?     | 6     | 112   | ?     | ?      | 133.12     | 1  |
| Row11  | 2             | ?               | ?             | ?               | ?       | 236   | 295   | ?     | 8     | 40    | ?     | ?      | 133.12     | 1  |
| Row12  | 2             | ?               | ?             | ?               | ?       | 0     | 0     | ?     | ?     | 0     | ?     | ?      | 240.56     | 1  |
| Row13  | 2             | ?               | ?             | ?               | ?       | 480   | 600   | ?     | 10    | 216   | ?     | ?      | 176.56     | 1  |
| Row14  | ?             | ?               | ?             | ?               | ?       | 148   | 185   | ?     | 0     | 8     | ?     | ?      | 236.08     | 1  |
| Row16  | ?             | ?               | ?             | ?               | ?       | 584   | 730   | ?     | 6     | 320   | ?     | ?      | 220.08     | 1  |
| Row17  | ?             | ?               | ?             | ?               | ?       | 168   | 210   | ?     | 2     | 32    | ?     | ?      | 166.56     | 1  |
| Row18  | ?             | ?               | ?             | ?               | ?       | 12    | 15    | ?     | 2     | 0     | ?     | ?      | 253.52     | 1  |
| Row20  | ?             | ?               | ?             | ?               | ?       | 168   | 210   | ?     | 2     | 56    | ?     | ?      | 272.08     | 1  |
| Row21  | ?             | ?               | ?             | ?               | ?       | 20    | 25    | ?     | 2     | 0     | ?     | ?      | 86.96      | 1  |
| Row22  | ?             | ?               | ?             | ?               | ?       | 192   | 240   | ?     | 2     | 80    | ?     | ?      | 166.56     | 1  |
| Row23  | ?             | ?               | ?             | ?               | ?       | 52    | 65    | ?     | 0     | 56    | ?     | ?      | 198.88     | 1  |
| Row24  | ?             | ?               | ?             | ?               | ?       | 216   | 270   | ?     | 8     | 128   | ?     | ?      | 200        | 1  |
| Row25  | ?             | ?               | ?             | ?               | ?       | 152   | 190   | ?     | 4     | 16    | ?     | ?      | 20.08      | 1  |
| Row26  | 2             | 0               | 0             | 0               | ?       | ?     | ?     | ?     | ?     | ?     | ?     | ?      | ?          | 1  |
| Row28  | 2             | ?               | ?             | ?               | ?       | 0     | 0     | ?     | ?     | 0     | ?     | ?      | 257.28     | 1  |
| Row29  | ?             | ?               | ?             | ?               | ?       | 312   | 390   | ?     | 0     | 120   | ?     | ?      | 200        | 1  |
| Row30  | ?             | ?               | ?             | ?               | ?       | 112   | 140   | ?     | 4     | 56    | ?     | ?      | 166.56     | 1  |
| Row31  | ?             | ?               | ?             | ?               | ?       | 28    | 35    | ?     | 0     | 16    | ?     | ?      | 285.2      | 1  |
| Row33  | 2             | ?               | ?             | ?               | ?       | 160   | 200   | ?     | 4     | 40    | ?     | ? Miss | sing Value | 1  |
| Row36  | ?             | ?               | ?             | ?               | ?       | 612   | 765   | ?     | 14    | 360   | ?     | ?      | 200        | 1  |
| Row37  | ?             | ?               | ?             | ?               | ?       | 380   | 475   | ?     | 4     | 208   | ?     | ?      | 336.56     | 1  |
| Row38  | ?             | ?               | ?             | ?               | ?       | 76    | 95    | ?     | 0     | 16    | ?     | ?      | 213.36     | 1  |
| Row40  | 2             | ?               | ?             | ?               | ?       | 228   | 285   | ?     | 22    | 56    | ?     | ?      | 200        | 1  |
| Row41  | 2             | ?               | ?             | ?               | ?       | 120   | 150   | ?     | 10    | 80    | ?     | ?      | 133.12     | 1  |
| Row42  | ?             | 5               | 0             | 0               | ?       | ?     | ?     | ?     | ?     | ?     | ?     | ?      | ?          | 1  |
| Row43  | ?             | ?               | ?             | ?               | ?       | 72    | 90    | ?     | 0     | 40    | ?     | ?      | 191.36     | 1  |
| Row44  | 2             | ?               | ?             | ?               | ?       | 0     | 0     | ?     | ?     | 0     | ?     | ?      | 120.4      | 1  |
| Row47  | 2             | ?               | ?             | ?               | ?       | 0     | 0     | ?     | ?     | 0     | ?     | ?      | 186.64     | 1  |
| Row48  | 2             | ?               | ?             | ?               | ?       | 172   | 215   | ?     | 4     | 200   | ?     | ?      | 137.68     | 1  |
| Row49  | 2             | 2               | 2             | 2               | 2       | 0     | 0     | 2     | 2     | 0     | 2     | 2      | 274.16     |    |

Missing Value Column Filter



IF (% missing value > threshold ) THEN remove column

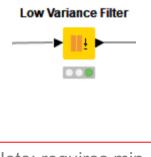






#### Low Variance

| •               |         |               | ing Value (Nur | nenc. oj       |             |       |       |       |         | Х   |
|-----------------|---------|---------------|----------------|----------------|-------------|-------|-------|-------|---------|-----|
| e Hilite Nav    | -       |               |                |                |             |       |       |       |         |     |
| ble "default" - | Rows: 4 | 0000 Spec - C | columns: 231 P | roperties Flow | / Variables |       |       |       |         |     |
| Row ID          | 20      | Var21         | Var22          | Var23          | Var24       | Var25 | Var26 | Var27 | D Var28 |     |
| Row51           | h       | 336           | 420            | 0              | 8           | 72    | 0     | 0     | 133.12  | _ ^ |
| Row52           | h       | 120           | 150            | 0              | 0           | 16    | 0     | 0     | 286.96  |     |
| Row54           | h       | 124           | 155            | 0              | 0           | 0     | 0     | 0     | 234.72  | _   |
| Row55           | n       | 184           | 230            | 0              | 4           | 64    | 0     | 0     | 642.64  | _   |
| Row56           | n       | 268           | 335            | 0              | 4           | 88    | 0     | 0     | 133.12  | _   |
| Row57           | h       | 128           | 160            | 0              | 0           | 96    | 0     | 0     | 198.88  | _   |
| Row59           | h       | 132           | 165            | 0              | 0           | 112   | 0     | 0     | 253.52  | _   |
| Row60           | n       | 44            | 55             | 0              | 0           | 24    | 0     | 0     | 186.64  | _   |
| Row61           | n       | 104           | 130            | 0              | 4           | 72    | 0     | 0     | 166.56  | _   |
| Row62           | h       | 212           | 265            | 0              | 6           | 136   | 0     | 0     | 379.6   | _   |
| Row63           | h       | 20            | 25             | 0              | 0           | 0     | 0     | 0     | 166.56  | _   |
| Row65           | h       | 492           | 615            | 0              | 18          | 256   | 0     | 0     | 133.12  | _   |
| Row66           | n       | 148           | 185            | 0              | 2           | 8     | 0     | 0     | 186.64  | _   |
| Row68           | n       | 140           | 175            | 0              | 2           | 40    | 0     | 0     | 176.56  | _   |
| Row69           | n       | 0             | 0              | 0              | 0           | 0     | 0     | 0     | 166.56  | _   |
| Row71           | n       | 0             | 0              | 0              | 0           | 0     | 0     | 0     | 392.08  | _   |
| Row72           | n       | 124           | 155            | 0              | 6           | 88    | 0     | 0     | 153.2   | _   |
| Row73           | n       | 152           | 190            | 0              | 0           | 32    | 0     | 0     | 253.52  | _   |
| Row74           | n       | 324           | 405            | 0              | 8           | 104   | 0     | 0     | 186.64  | _   |
| Row75           | n       | 0             | 0              | 0              | 0           | 0     | 0     | 0     | 0       |     |
| Row76           | n       | 60            | 75             | 0              | 6           | 0     | 0     | 0     | 200     |     |
| Row77           | n       | 180           | 225            | 0              | 4           | 88    | 0     | 0     | 166.56  |     |
| Row78           | h       | 232           | 290            | 0              | 4           | 144   | 0     | 0     | 200     |     |
| Row79           | n       | 16            | 20             | 0              | 0           | 16    | 0     | 0     | 313.68  |     |
| Row81           | n       | 152           | 190            | 0              | 0           | 48    | 0     | 0     | 220.08  | _   |
| Row82           | h       | 108           | 135            | 0              | 4           | 88    | 0     | 0     | 166.56  | ~   |



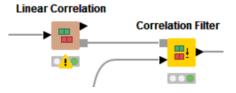
Note: requires minmax-normalization, and only works for numeric columns

- If column has constant value (variance = 0), it contains no useful information
- In general: IF (variance < threshold) THEN remove column</p>

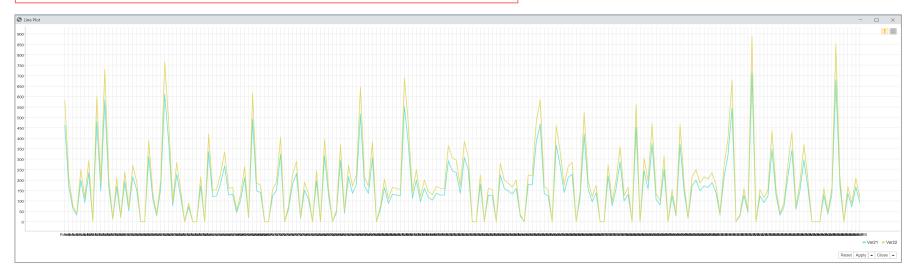


#### **High Correlation**

- Two highly correlated input variables probably carry similar information
- IF ( corr(var1, var2) > threshold ) => remove var1



Note: requires min-max-normalization of numeric columns





### **Principal Component Analysis (PCA)**

 PCA is a statistical procedure that orthogonally transforms the original *n* coordinates of a data set into a new set of *n* coordinates, called principal components.

 $(PC_1, PC_2, \cdots PC_n) = PCA(X_1, X_2, \cdots X_n)$ 

- The first principal component PC<sub>1</sub> follows the direction (eigenvector) of the largest possible variance (largest eigenvalue of the covariance matrix) in the data.
- Each succeeding component  $PC_k$  follows the direction of the **next largest possible variance** under the constraint that it is orthogonal to (i.e., uncorrelated with) the preceding components  $(PC_1, PC_2, \cdots PC_{k-1})$ .

If you're still curious, there's LOTS of different ways to think about PCA: <u>https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues</u>

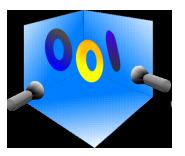
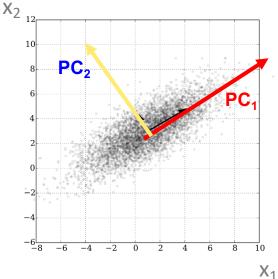


Image from Wikipedia

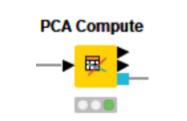






### **Principal Component Analysis (PCA)**

- *PC*<sub>1</sub> describes most of the variability in the data, *PC*<sub>2</sub> adds the next big contribution, and so on. In the end, the last PCs do not bring much more information to describe the data.
- Thus, to describe the data we could use only the top m < n (i.e.,  $PC_1, PC_2, \cdots PC_m$ ) components with little if any loss of information
- Caveats:
  - Results of PCA are quite difficult to interpret
  - Normalization required
  - Only effective on numeric columns



**Dimensionality Reduction** 

#### Linear Discriminant Analysis (LDA)

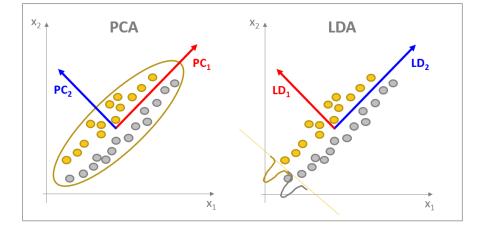
 LDA is a statistical procedure that orthogonally transforms the original n coordinates of a data set into a new set of n coordinates, called linear discriminants.

$$(LD_1, LD_2, \cdots LD_n) = LDA(X_1, X_2, \cdots X_n)$$

Here, however, discriminants (components)
 maximize the separation between classes



- PCA : unsupervised
- LDA : supervised





#### Linear Discriminant Analysis (LDA)

- LD<sub>1</sub> describes best the class separation in the data, LD<sub>2</sub> adds the next big contribution, and so on. In the end, the last LDs do not bring much more information to separate the classes.
- Thus, for our classification problem we could use only the top m < n (i.e.,  $LD_1, LD_2, \cdots LD_m$ ) discriminants with little if any loss of information

#### Caveats:

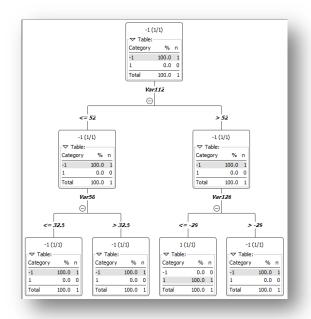
- Results of LDA are quite difficult to interpret
- Normalization required
- Only effective on numeric columns

Dimensionality Reduction



#### **Ensembles of Shallow Decision Trees**

- Often used for classification, but can be used for feature selection too
- Generate a large number (we used 2000) of trees that are very shallow (2 levels, 3 sampled features)
- Calculate the statistics of candidates and selected features. The more often a feature is selected in such trees, the more likely it contains predictive information
- Compare the same statistics with a forest of trees trained on a random dataset.

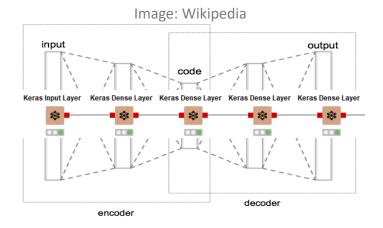






#### Autoencoder

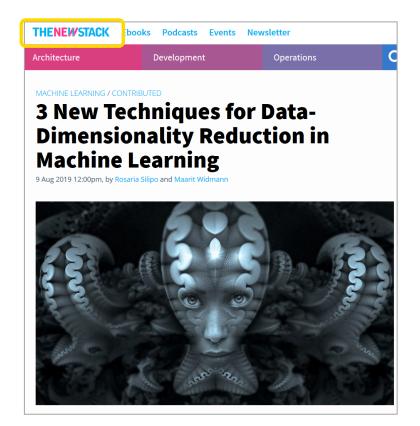
 Feed-Forward Neural Network architecture with encoder / decoder structure. The network is trained to reproduce the input vector onto the output layer.



- That is, it compresses the input vector (dimension n) into a smaller vector space on layer "code" (dimension m<n) and then it reconstructs the original vector onto the output layer.
- If the network was trained well, the reconstruction operation happens with minimal loss of information.



#### **Material**

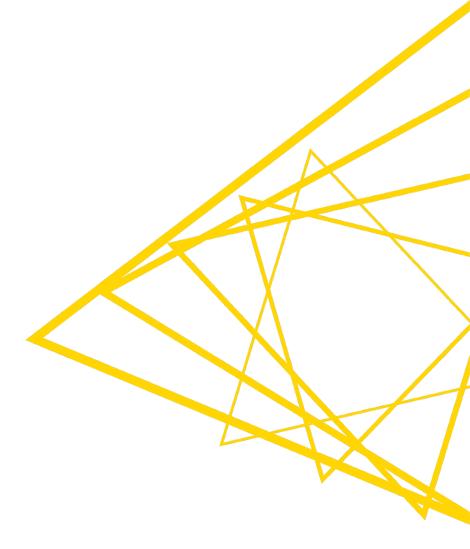


https://thenewstack.io/3-new-techniques-for-data-dimensionality-reduction-in-machine-learning/





### Data Preparation: Feature Selection



#### Feature Selection vs. Dimensionality Reduction

- Both methods are used for reducing the number of features in a dataset. However:
- Feature selection is simply selecting and excluding given features without changing them.
- Dimensionality reduction **might transform** the features into a lower dimension.
- Feature selection is often a somewhat more aggressive and more computationally expensive process.
  - Backward Feature Elimination
  - Forward Feature Construction



#### **Backward Feature Elimination (greedy top-down)**

- 1. First train one model on *n* input features
- 2. Then train *n* separate models each on n 1 input features and remove the feature whose removal produced the least disturbance
- 3. Then train n 1 separate models each on n 2 input features and remove the feature whose removal produced the least disturbance
- 4. And so on. Continue until desired maximum error rate on *training* data is reached.



#### **Backward Feature Elimination**

| <ul> <li>▲ Dialog - 0:344:0:347:3 - Feature Selection Filter (Do the final filtering here)</li> <li>File</li> <li>Column Selection Flow Variables Job Manager Selection Memory Policy</li> <li>☑ Include static columns</li> <li>○ Select features manually</li> <li>④ Select features automatically by score threshold</li> <li>Prediction score threshold</li> <li>0.96 ①</li> <li>0.97</li> <li>0.97</li> <li>0.968</li> <li>12</li> <li>0.965</li> <li>12</li> <li>0.965</li> <li>12</li> <li>0.965</li> <li>12</li> <li>0.965</li> <li>13</li> <li>0.965</li> <li></li></ul> | D       Var6         Var7       Var13         Var21       Var22         Var22       Var24         Var25       Var25         Var28       Var28         Var30       Var44         Var57       Var57         Var73       Var73         Var76       Var76 | node by<br>ate<br>pns -<br>ation Feature Selection<br>Loop End<br>) for the<br>prming<br>el<br>Maximize accuracy<br>el<br>the final filtering here |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.97 61<br>0.968 17<br>0.968 8<br>0.965 12<br>0.965 10<br>0.965 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D Var28                                                                                                                                                                                                                                               | el maximize accuracy<br>reature Selection<br>Filter                                                                                                |
| 0.965 59<br>0.963 35<br>0.963 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D Var44<br>D Var57<br>D Var55<br>D Var73<br>D Var74                                                                                                                                                                                                   |                                                                                                                                                    |
| 0.96 44<br>0.96 40<br>0.96 37<br>0.96 37<br>0.96 23<br>0.96 23<br>0.96 14<br>0.96 3<br>0.96 3<br>0.96 3<br>0.96 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D Var78 D Var81 D Var83 D Var85 D Var85                                                                                                                                                                                                               |                                                                                                                                                    |
| 0.958 62<br>0.958 53<br>0.958 34<br>0.958 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vari12           Vari13           Vari19           Vari20           Vari23           Vari25                                                                                                                                                           |                                                                                                                                                    |
| 0.958 22<br>0.958 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D Var125<br>D Var126<br>D Var132<br>D Var133 v                                                                                                                                                                                                        |                                                                                                                                                    |

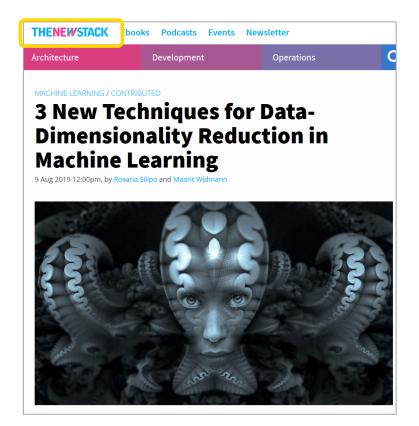


#### Forward Feature Construction (greedy bottom-up)

- 1. First, train *n* separate models on one single input feature and keep the feature that produces the best accuracy.
- 2. Then, train n 1 separate models on 2 input features, the selected one and one more. At the end keep the additional feature that produces the best accuracy.
- 3. And so on ... Continue until an acceptable error rate is reached.



#### **Material**

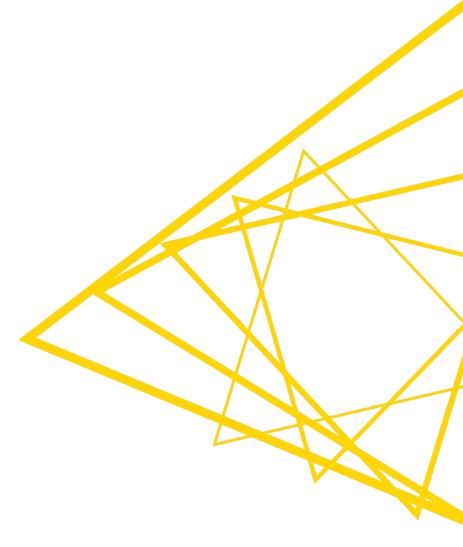


https://thenewstack.io/3-new-techniques-for-data-dimensionality-reduction-in-machine-learning/



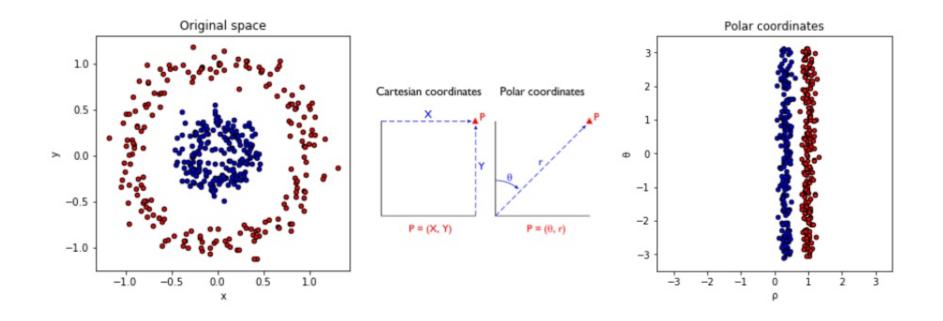


## Data Preparation: Feature Engineering



#### **Feature Engineering: Motivation**

**Sometimes** transforming the original data allows for better discrimination by ML algorithms.



### **Feature Engineering: Techniques**

 Coordinate Transformations Remember PCA and LDA? Polar coordinates , ...

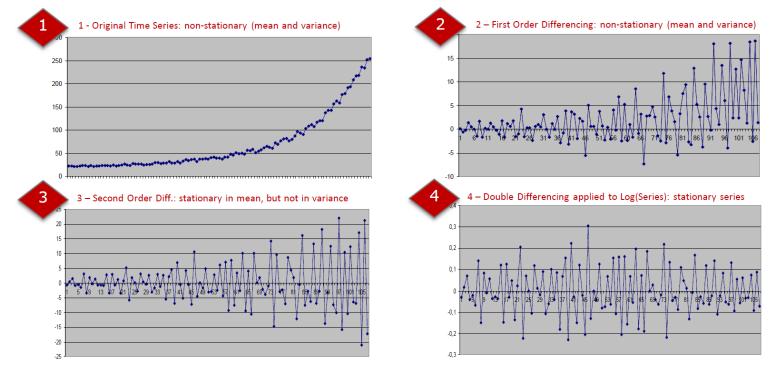
- $x_{2} + PCA + LDA + LD$
- Distances to cluster centres, after data clustering
- Simple math transformations on single columns (e<sup>x</sup>, x<sup>2</sup>, x<sup>3</sup>, tanh(x), log(x), ...)
- Combining together multiple columns in math functions
   (*f*(*x*<sub>1</sub>, *x*<sub>2</sub>, ... *xn*), *x*<sub>2</sub> *x*<sub>1</sub>, ...)
- The whole process is domain dependent



271

#### **Feature Engineering in Time Series Analysis**

- Second order differences: y = x(t) x(t-1) & y'(t) = y(t) y(t-1)
- Logarithm: log(y'(t))





#### **Confirmation of Attendance and Survey**

 If you would like to get a "Confirmation of Attendance" please click on the link below\*

Confirmation of Attendance and Survey

 The link also takes you to our course feedback survey. Filling it in is optional but highly appreciated!

Thank you!

\*Please send your request within the next 3 days

| Open for Innovation<br>KNIME                                       |
|--------------------------------------------------------------------|
| L4-ML Online Course Feedback                                       |
| Confirmation of Attendance                                         |
| Request a confirmation of attendance by filling out this section:  |
| Enter name to appear on "Confirmation of Attendance" Your answer   |
| Enter email to receive "Confirmation of Attendance"<br>Your answer |
| Back Submit Never submit passwords through Google Forms.           |



#### **Exercises**

- Clustering
  - Goal: Cluster location data from California
  - 01\_Clustering

#### Data Preparation

- 02\_Missing\_Value\_Handling
- 03\_Outlier\_Detection
- 04\_Dimensionality\_Reduction
- 05\_Feature\_Selection

| A KNIME Explorer 🗙                         | - 0 |
|--------------------------------------------|-----|
|                                            | 2   |
| ▶ 🍌 My-KNIME-Hub (hub.knime.com)           |     |
| EXAMPLES (knime@hub.knime.com)             |     |
| 🔻 📥 LOCAL (Local Workspace)                |     |
| Example Workflows                          |     |
| L4_ML_Intro_to_Machine_Learning_Algorithms |     |
| Session_1                                  |     |
| Session_2                                  |     |
| Session_3                                  |     |
| The session_4                              |     |
| 01_Exercises                               |     |
| ♪ 01_Clustering                            |     |
| 🛕 02_Missing_Value_Handling                |     |
| 🛕 02_Outlier_Detection                     |     |
| 🛕 03_Dimensionality_Reduction              |     |
| 🛕 04_Feature_Selection                     |     |
| ▼ <sup>™</sup> 02_Solution                 |     |
| 1_01_Clustering_solution                   |     |
| 🛕 02_Missing_Value_Handling_solution       |     |
| ▲ 02_Outlier_Detection_solution            |     |
| A 03_Dimensionality_Reduction_solution     |     |
| ▲ 04_Feature_Selection_solution            |     |
|                                            |     |





#### **Machine Learning Cheat Sheet**

#### KNIME Cheat Sheet: Machine Learning with KNIME Analytics Platform SUPERVISED LEARNING UNSUPERVISED LEARNING Supervised Learning: A set of machine learning algorithms to predict the value of a target class or variable. They produce a mapping function (model) from the input features to the target class/variable. To estimate the model parameters in the input features to the target class of variable. CLASSIFICATION NUMERIC PREDICTION NUMERIC PREDICTION & CLASSIFICATION sed learning where the target is a class. The model learns to produce svector of input features to the class with the highest score. A cost Numeric Prediction: A type of supervised lea input features. Note that numeric prediction 100. CLUSTERING Office MUP Loanse • 86 • (N): Inspired by biological nervous ystems, Artificial Neural Networks re-based on architectures of TIME SERIES ANALYSIS terconnected units called artificial surons. Artificial neurons' 000 Time Series Analysis: A set of numeric prediction methods to analyze/pr data. Time series are time ordered sequences of numeric values. In part Means; The n data points in the dataset an nototype is taken as the average -\* whe (AB) enoded is constructed on a specified number p of past values are prepared by a degree of differencing of to correct non-stationarity; a linear combination - named Moving Average (MA) - models the p par-ecidual errors. All ARIMA model parameters are estimated concurrent. - All . . rvised algorithm construct-et of discriminative lanes in high-dimensional **. . . .** 110 ession: A statistical aloc salan Tree: Builds a decision tree to prediperformance as well as peralle execution. ML-based TSA: A numeric prediction model trained o .... alized Linear Model (GLN) istics-based flexible genera f ordinary linear regression, ilso for non-normal distribu of the target variable. GLM ong Short Term Memory (LSTM) Units: LSTM unit 80 1.1.1 $\mathbf{X}$ ENSEMBLE LEARNING DEPLOYMENT core, density-reachable, and out e and density-reachable points sity regions are clustered toget Ensemble Learning: A combination of multiple models from supervised learning algorithms to obtain a more stable and accurate overall model. Most commonly used ensemble techniques are Bagging with no close neighbors in Read Data Read Model Transform Learner Write Model BAGGING $\frac{1}{2}$ 2 A.M., $\mathbf{X}$ ~~~ Predicto Score Data Input Data Output Predictor TRAINING BOOSTING est of Decision/Repression Tra-Boosting: A method for training a set of classification/regression models iterative A each step, a new model is trained on the prediction encors and added to the encertible to improve the results from the previous model state, leading to higher Resources RECOMMENDATION ENGINES EVALUATION Evaluation: Various scoring metrics for assessing model quality - in particular, a model's predictive ability or propensity to end ing Data Science". Au ÷. WME Blog: Engaging topics, challenge stry news, and knowledge nuggets at ask's success through the count of matches and mismatches between the actual and predicted classes ike true positives, falso negatives, false positives, and rue negatives. One class is arbitrarily selected as the .... . Accuracy Measures: results of a machine learning model will dependent dataset. A model is trained and in different pains of training set and test from the original dataset. Some basic NG8 team-based obliaboration, automation, mana ment, and deployment of data acience workf as analytical applications and services. Visit knime.com/server for more information.

https://www.knime.com/sites/default/files/110519\_KNIME\_Machine\_Learning\_Cheat%20Sheet.pdf





## **Thank You!**

